Skip to main content
Log in

A new stability equation for the Abelian Higgs–Kibble model with a dimension-6 derivative operator

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the dynamics of the scalar Higgs field in the Abelian Higgs–Kibble model supplemented with a dimension-6 derivative operator can be constrained at the quantum level by a certain stability equation. It holds in the Landau gauge and is derived within the recently proposed extended field formalism, where the physical scalar is described by a gauge-invariant field variable. Physical implications of the stability equation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cepeda, S. Gori, P. Ilten, M. Kado, and F. Riva (eds.), Higgs Physics at the HL-LHC and HE-LHC (CERN Yellow Reports: Monographs, Vol. 7), CERN, Geneva (2019); arXiv: 1902.00134.

    Google Scholar 

  2. W. Buchmüller and D. Wyler, “Effective lagrangian analysis of new interactions and flavour conservation,” Nucl. Phys. B, 268, 621–653 (1986).

    Article  ADS  Google Scholar 

  3. R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott, “Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology,” JHEP, 2014, 159, 17 pp. (2014); arXiv: 1312.2014.

    Article  Google Scholar 

  4. I. Brivio and M. Trott, “The standard model as an effective field theory,” Phys. Rep., 793, 1–98 (2019); arXiv: 1706.08945.

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Gomis and S. Weinberg, “Are nonrenormalizable gauge theories renormalizable?,” Nucl. Phys. B, 469, 473–487 (1996); arXiv: hep-th/9510087.

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Gomis, J. París, and S. Samuel, “Antibracket, antifields and gauge-theory quantization,” Phys. Rep., 259, 1–145 (1995); arXiv: hep-th/9412228.

    Article  ADS  MathSciNet  Google Scholar 

  7. A. A. Slavnov, “Massive gauge fields,” Theoret. and Math. Phys., 10, 201–217 (1972).

    Article  ADS  Google Scholar 

  8. J. C. Taylor, “Ward identities and charge renormalization of the Yang–Mills field,” Nucl. Phys. B, 33, 436–444 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. E. Kallosh and I. V. Tyutin, “The equivalence theorem and gauge invariance in renormalizable theories,” Soviet J. Nuclear Phys., 17, 98–106 (1973).

    MathSciNet  Google Scholar 

  10. S. Kamefuchi, L. O’Raifeartaigh, and A. Salam, “Change of variables and equivalence theorems in quantum field theories,” Nucl. Phys., 28, 529–549 (1961).

    Article  MathSciNet  Google Scholar 

  11. R. Ferrari, M. Picariello, and A. Quadri, “An approach to the equivalence theorem by the Slavnov–Taylor identities,” JHEP, 04, 033, 29 pp. (2002); arXiv: hep-th/0203200.

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Fröhlich, G. Morchio, and F. Strocchi, “Higgs phenomenon without a symmetry breaking order parameter,” Phys. Lett. B, 97, 249–252 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Fröhlich, G. Morchio, and F. Strocchi, “Higgs phenomenon without symmetry breaking order parameter,” Nucl. Phys. B, 190, 553–582 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Binosi and A. Quadri, “Off-shell renormalization in Higgs effective field theories,” JHEP, 04, 050, 28 pp. (2018); arXiv: 1709.09937.

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Binosi and A. Quadri, “Off-shell renormalization in the presence of dimension 6 derivative operators. Part I. General theory,” JHEP, 09, 032, 35 pp. (2019); arXiv: 1904.06692.

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Binosi and A. Quadri, “Off-shell renormalization in the presence of dimension 6 derivative operators. II. Ultraviolet coefficients,” Eur. Phys. J. C, 80, 807, 22 pp. (2020); arXiv: 1904.06693.

    Article  ADS  Google Scholar 

  17. D. Dudal, D. M. van Egmond, M. S. Guimarães, O. Holanda, L. F. Palhares, G. Peruzzo, and S. P. Sorella, “Gauge-invariant spectral description of the \(U(1)\) Higgs model from local composite operators,” JHEP, 02, 188, 38 pp. (2020); arXiv: 1912.11390.

    Article  ADS  MathSciNet  Google Scholar 

  18. D. Dudal, D. M. van Egmond, M. S. Guimaraes, L. F. Palhares, G. Peruzzo, and S. P. Sorella, “Spectral properties of local gauge invariant composite operators in the \(SU(2)\) Yang– Mills–Higgs model,” Eur. Phys. J. C, 81, 222, 29 pp. (2021); arXiv: 2008.07813.

    Article  ADS  Google Scholar 

  19. D. Binosi and A. Quadri, “Off-shell renormalization in the presence of dimension 6 derivative operators. Part III. Operator mixing and \(\beta\) functions,” JHEP, 05, 141, 28 pp. (2020); arXiv: 2001.07430.

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Dudal, G. Peruzzo, and S. P. Sorella, “The Abelian Higgs model under a gauge invariant looking glass: exploiting new Ward identities for gauge invariant operators and the Equivalence Theorem,” JHEP, 10, 039, 39 pp. (2021); arXiv: 2105.11011.

    Article  ADS  MathSciNet  Google Scholar 

  21. D. Dudal, D. M. van Egmond, I. F. Justo, G. Peruzzo, and S. P. Sorella, “Gauge invariant operators in the \(SU(2)\) Higgs model: Ward identities and renormalization,” Phys. Rev. D, 105, 065018, 16 pp. (2022); arXiv: 2111.11958.

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Becchi, A. Rouet, and R. Stora, “Renormalization of the abelian Higgs–Kibble model,” Commun. Math. Phys., 42, 127–162 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Becchi, A. Rouet, and R. Stora, “The Abelian Higgs Kibble model, unitarity of the \(S\)-operator,” Phys. Lett. B, 52, 344–346 (1974).

    Article  ADS  Google Scholar 

  24. A. Quadri, “Abelian embedding formulation of the Stueckelberg model and its power- counting renormalizable extension,” Phys. Rev. D, 73, 065024, 13 pp. (2006); arXiv: hep-th/0601169.

    Article  ADS  Google Scholar 

  25. A. Quadri, “Higgs potential from derivative interactions,” Internat. J. Modern Phys. A, 32, 1750089, 25 pp. (2017); arXiv: 1610.00150.

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Binosi and A. Quadri, “Renormalizable extension of the Abelian Higgs–Kibble model with a dimension-six operator,” Phys. Rev. D, 106, 065022, 17 pp. (2022); arXiv: 2206.00894.

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Quadri, “Algebraic properties of BRST coupled doublets,” JHEP, 05, 051, 15 pp. (2002); arXiv: hep-th/0201122.

    Article  ADS  MathSciNet  Google Scholar 

  28. U. G. Aglietti and D. Anselmi, “Inconsistency of Minkowski higher-derivative theories,” Eur. Phys. J. C, 77, 84, 12 pp. (2017); arXiv: 1612.06510.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Quadri.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 543–554 https://doi.org/10.4213/tmf10484.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quadri, A. A new stability equation for the Abelian Higgs–Kibble model with a dimension-6 derivative operator. Theor Math Phys 217, 1879–1888 (2023). https://doi.org/10.1134/S0040577923120073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923120073

Keywords

Navigation