Skip to main content
Log in

Cluster variables for affine Lie–Poisson systems

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that having any planar (cyclic or acyclic) directed network on a disc with the only condition that all \(n_1+m\) sources are separated from all \(n_2+m\) sinks, we can construct a cluster-algebra realization of elements of an affine Lie–Poisson algebra \(R(\lambda,\mu){\stackrel{1}{T}}(\lambda){\stackrel{2}{T}}(\mu) ={\stackrel{2}{T}}(\mu){\stackrel{1}{T}}(\lambda)R(\lambda,\mu)\) with \(({n_1\times n_2})\)-matrices \(T(\lambda)\). Upon satisfaction of some invertibility conditions, we can construct a realization of a quantum loop algebra. Having the quantum loop algebra, we can also construct a realization of the twisted Yangian algebra or of the quantum reflection equation. For each such a planar network, we can therefore construct a symplectic leaf of the corresponding infinite-dimensional algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. L. O. Chekhov and M. Shapiro, “Log-canonical coordinates for symplectic groupoid and cluster algebras,” Int. Math. Res. Notices, 2023, 9565–9652 (2023).

    Article  MathSciNet  Google Scholar 

  2. L. Chekhov, M. Mazzocco, and V. Rubtsov, “Algebras of quantum monodromy data and decorated character varieties,” arXiv: 1705.01447.

  3. V. Fock and A. Goncharov, “Moduli spaces of local systems and higher Teichmüller theory,” Publ. Math. Inst. Hautes Études Sci., 103, 1–211 (2006); arXiv: math.AG/0311149.

    Article  Google Scholar 

  4. A. M. Gavrilik and A. U. Klimyk, “\(q\)-Deformed orthogonal and pseudo-orthogonal algebras and their representations,” Lett. Math. Phys., 21, 215–220 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. E. Nelson and T. Regge, “Homotopy groups and \((2+1)\)-dimensional quantum gravity,” Nucl. Phys. B, 328, 190–199 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  6. J. E. Nelson, T. Regge, and F. Zertuche, “Homotopy groups and \((2+1)\)-dimensional quantum de Sitter gravity,” Nucl. Phys. B, 339, 516–532 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Ugaglia, “On a Poisson structure on the space of Stokes matrices,” Internat. Math. Res. Notices, 1999, 473–493 (1999).

    Article  MathSciNet  Google Scholar 

  8. A. I. Bondal, “A symplectic groupoid of triangular bilinear forms and the braid group,” Izv. Math., 68, 659–708 (2004).

    Article  MathSciNet  Google Scholar 

  9. V. V. Fock and L. O. Chekhov, “Quantum mapping class group, pentagon relation, and geodesics,” Proc. Steklov Inst. Math., 226, 149–163 (1999).

    Google Scholar 

  10. L. O. Chekhov and V. V. Fock, “Observables in 3d gravity and geodesic algebras,” Czech. J. Phys., 50, 1201–1208 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Molev, Yangians and Classical Lie Algebras (Mathematical Surveys and Monographs, Vol. 143), Amer. Math. Soc., Providence, RI (2007).

    Google Scholar 

  12. M. Gekhtman, M. Shapiro, and A. Vainshtein, “Cluster algebra and Poisson geometry,” Moscow Math. J., 3, 899–934 (2003).

    Article  MathSciNet  Google Scholar 

  13. M. Gekhtman, M. Shapiro, and A. Vainshtein, “Poisson geometry of directed networks in a disc,” Selecta Math. (N.S.), 15, 61–103 (2009).

    Article  MathSciNet  Google Scholar 

  14. M. Gekhtman, M. Shapiro, and A. Vainshtein, “Poisson geometry of directed networks in an annulus,” J. Eur. Math. Soc., 14, 541–570 (2012).

    Article  MathSciNet  Google Scholar 

  15. L. Chekhov and M. Mazzocco, “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory,” Adv. Math., 226, 4731–4775 (2011); arXiv: 0909.5350.

    Article  MathSciNet  Google Scholar 

  16. V. G. Drinfel’d, “Hopf algebras and the quantum Yang–Baxter equation,” Soviet Math. Dokl., 32, 256–258 (1985).

    Google Scholar 

  17. V. G. Drinfeld, “Quantum groups,” in: Proceedings of the International Congress of Mathematicians (Berkeley, CA, August 3–11, 1986, A. E. Gleason, ed.), AMS, Providence, RI (1987), pp. 798–820.

    Google Scholar 

  18. V. G. Drinfeld, “A new realization of Yangians and of quantum affine algebras,” Soviet Math. Dokl., 36, 212–216 (1988).

    MathSciNet  Google Scholar 

  19. S. Fomin and A. Zelevinsky, “Cluster algebras I: Foundations,” J. Amer. Math. Soc., 15, 497–529 (2002).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to Michael and Alexander Shapiro for the useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Chekhov.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 672–693 https://doi.org/10.4213/tmf10632.

Appendix: Commutation relations for $$T^-_2$$

We calculate the commutation relations between two matrices

$$T^-_2:=M_{22}[M{}_{12}^{-1}]^2 M_{11}.$$
We also use \(T^-_3:=M_{22}[M{}_{12}^{-1}]^3 M_{11}\) and \(T^-_1:=M_{22}M{}_{12}^{-1} M_{11}\):
$$ \begin{aligned} \, R^{-\mathrm{T}}& \stackrel {1}{M}_{22} \stackrel {1}{M}{}_{12}^{-2} \stackrel {1}{M}_{11} \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-2} \stackrel {2}{M}_{11}={} \\ &=R^{-\mathrm{T}} \stackrel {1}{M}_{22} \stackrel {1}{M}{}_{12}^{-2} \stackrel {2}{M}_{22} \stackrel {1}{M}_{11} \stackrel {2}{M}{}_{12}^{-2} \stackrel {2}{M}_{11}+{} \\ &\hphantom{={}}+ R^{-\mathrm{T}} \stackrel {1}{M}_{22} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} (q-q^{-1}) \stackrel {2}{M}_{21} \stackrel {1}{M}_{12} P \stackrel {2}{M}{}_{12}^{-2} \stackrel {2}{M}_{11}={} \\ &= R^{-\mathrm{T}} \stackrel {1}{M}_{22} \stackrel {2}{M}_{22} [R^{-1} \stackrel {1}{M}{}_{12}^{-1}]^2 \stackrel {2}{M}{}_{12}^{-1} R^{-\mathrm{T}} \stackrel {2}{M}{}_{12}^{-1} R^{-\mathrm{T}} \stackrel {1}{M}_{11} \stackrel {2}{M}_{11}+{} \\ &\hphantom{={}}+R^{-\mathrm{T}} \stackrel {1}{M}_{22} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} (q-q^{-1}) \stackrel {2}{M}_{21} \stackrel {1}{M}_{12} P \stackrel {2}{M}{}_{12}^{-2} \stackrel {2}{M}_{11}={} \\ &= \stackrel {2}{M}_{22} \stackrel {1}{M}_{22}R^{-\mathrm{T}} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1}R^{-1} \stackrel {1}{M}{}_{12}^{-1}R^{-1} R^{-\mathrm{T}} \stackrel {2}{M}{}_{12}^{-1} \stackrel {2}{M}_{11} \stackrel {1}{M}_{11}R^{-\mathrm{T}} +{} \\ &\hphantom{={}}+ R^{-\mathrm{T}} \stackrel {1}{M}_{22} (q-q^{-1}) \stackrel {2}{M}_{21} P \stackrel {2}{M}{}_{12}^{-3} \stackrel {2}{M}_{11}={} \\ &= \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}_{22} \stackrel {1}{M}{}_{12}^{-1}R^{-1} \stackrel {1}{M}{}_{12}^{-1} [I- (q-q^{-1}) R^{-1}P] \stackrel {2}{M}{}_{12}^{-1} \stackrel {2}{M}_{11} \stackrel {1}{M}_{11}R^{-\mathrm{T}} +{} \\ &\hphantom{={}}+R^{-\mathrm{T}} \stackrel {1}{M}_{22} (q-q^{-1}) \stackrel {2}{M}_{21} P \stackrel {2}{M}{}_{12}^{-3} \stackrel {2}{M}_{11}={} \\ &= \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}_{22} \stackrel {1}{M}{}_{12}^{-1}R^{-1} \stackrel {1}{M}{}_{12}^{-1} \stackrel {2}{M}{}_{12}^{-1} \stackrel {2}{M}_{11} \stackrel {1}{M}_{11}R^{-\mathrm{T}} -{} \\ &\hphantom{={}}- (q-q^{-1}) \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}_{22} \stackrel {1}{M}{}_{12}^{-1}R^{-1} \stackrel {1}{M}{}_{12}^{-1} R^{-1} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}_{11} \stackrel {2}{M}_{11}R^{-1}P +{} \\ &\hphantom{={}}+(q-q^{-1}) R^{-\mathrm{T}} \stackrel {1}{M}_{22} \stackrel {2}{M}_{21} P \stackrel {2}{M}{}_{12}^{-3} \stackrel {2}{M}_{11}={} \\ &= \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}_{22} \stackrel {1}{M}{}_{12}^{-1} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} R^{-1} \stackrel {2}{M}_{11} \stackrel {1}{M}_{11}R^{-\mathrm{T}}-{} \\ &\hphantom{={}}- (q-q^{-1}) \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}_{22} \stackrel {2}{M}_{11} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}_{11} P +{} \\ &\hphantom{={}}+(q-q^{-1}) R^{-\mathrm{T}} \stackrel {1}{M}_{22} \stackrel {2}{M}_{21} P \stackrel {2}{M}{}_{12}^{-3} \stackrel {2}{M}_{11}={} \\ &= \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}_{22} R \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} R^{-1} \stackrel {2}{M}_{11} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}_{11}R^{-\mathrm{T}} +{} \\ &\hphantom{={}}+ (q-q^{-1})^2 \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}_{21} \stackrel {2}{M}_{12} P [ \stackrel {1}{M}{}_{12}^{-1}]^3 \stackrel {1}{M}_{11} P+{} \\ &\hphantom{={}}+(q-q^{-1}) R^{-\mathrm{T}} \stackrel {1}{M}_{22} \stackrel {2}{M}_{21} P \stackrel {2}{M}{}_{12}^{-3} \stackrel {2}{M}_{11} - (q-q^{-1}) \stackrel {2}T{}^-_1 \stackrel {1}T{}^-_3P={} \\ &= \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}_{22} R \stackrel {2}{M}{}_{12}^{-1} \stackrel {2}{M}_{11} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}_{11}R^{-\mathrm{T}} +{} \\ &\hphantom{={}}+ (q-q^{-1})[ (q-q^{-1})P+ R^{-\mathrm{T}}] \stackrel {1}{M}_{22} \stackrel {2}{M}_{21} [ \stackrel {1}{M}{}_{12}^{-1}]^3 \stackrel {1}{M}_{11} P - (q-q^{-1}) \stackrel {2}T{}^-_1 \stackrel {1}T{}^-_3P={} \\ &= \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}_{22} [ (q-q^{-1})P+ R^{-\mathrm{T}}] \stackrel {2}{M}{}_{12}^{-1} \stackrel {2}{M}_{11} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}_{11}R^{-\mathrm{T}} +{} \\ &\hphantom{={}}+ (q-q^{-1})R \stackrel {1}{M}_{22} \stackrel {2}{M}_{21} [ \stackrel {1}{M}{}_{12}^{-1}]^3 \stackrel {1}{M}_{11} P - (q-q^{-1}) \stackrel {2}T{}^-_1 \stackrel {1}T{}^-_3P={} \end{aligned}$$
$$ \begin{aligned} &= \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}_{22}R^{-\mathrm{T} \stackrel {2}{M}{}_{12}^{-1} } \stackrel {2}{M}_{11} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}_{11}R^{-\mathrm{T}} +{} \\ &\hphantom{={}}+ (q-q^{-1})P \stackrel {1}{M}_{22} \stackrel {1}{M}{}_{12}^{-1}( \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {2}{M}_{11}) \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}_{11}R^{-\mathrm{T}} +{} \\ &\hphantom{={}}+ (q-q^{-1})R \stackrel {1}{M}_{22} \stackrel {2}{M}_{21} [ \stackrel {1}{M}{}_{12}^{-1}]^3 \stackrel {1}{M}_{11} P - (q-q^{-1}) \stackrel {2}T{}^-_1 \stackrel {1}T{}^-_3P={} \\ &= \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}_{22} \stackrel {2}{M}_{11} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}_{11}R^{-\mathrm{T}} +{} \\ &\hphantom{={}}+ (q-q^{-1})P \stackrel {1}{M}_{22}[ \stackrel {1}{M}{}_{12}^{-1} ]^3 ( \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {2}{M}_{11}) \stackrel {1}{M}_{11}R^{-\mathrm{T}} +{} \\ &\hphantom{={}}+ (q-q^{-1}) \stackrel {2}{M}_{21} \stackrel {1}{M}_{22}[ \stackrel {1}{M}{}_{12}^{-1}]^3 \stackrel {1}{M}_{11} P - (q-q^{-1}) \stackrel {2}T{}^-_1 \stackrel {1}T{}^-_3P={} \\ &= \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {2}{M}{}_{12}^{-1} \stackrel {2}{M}_{11} \stackrel {1}{M}_{22} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}_{11}R^{-\mathrm{T}} -{} \\ &\hphantom{={}}-(q-q^{-1}) \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {2}{M}{}_{12}^{-1} \stackrel {1}{M}_{21} \stackrel {2}{M}_{12} P \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}{}_{12}^{-1} \stackrel {1}{M}_{11}R^{-\mathrm{T}}+{} \\ &\hphantom{={}} + (q-q^{-1})P \stackrel {1}{M}_{22}[ \stackrel {1}{M}{}_{12}^{-1} ]^3 \stackrel {1}{M}_{11} \stackrel {2}{M}_{22} \stackrel {2}{M}{}_{12}^{-1} \stackrel {2}{M}_{11} -{} \\ &\hphantom{={}}- (q-q^{-1})^2P \stackrel {1}{M}_{22}[ \stackrel {1}{M}{}_{12}^{-1} ]^3 \stackrel {2}{M}_{21} \stackrel {1}{M}_{11}P- (q-q^{-1})[ \stackrel {2}T{}^-_1- \stackrel {2}{M}_{21} ] \stackrel {1}T{}^-_3P ={} \\ &={} \stackrel {2}T{}^-_{2} \stackrel {1}T{}^-_{2}R^{-\mathrm{T}} -(q-q^{-1})P \stackrel {1}{M}_{22}[ \stackrel {1}{M}{}_{12}^{-1}]^3 \stackrel {2}{M}_{21} \stackrel {1}{M}_{11} [R^{-\mathrm{T}}+{} \\ &\hphantom{={}}+(q-q^{-1})P] + (q-q^{-1})P \stackrel {1}T{}^-_{3} \stackrel {2}T{}^-_{1} - (q-q^{-1})[ \stackrel {2}T{}^-_1- \stackrel {2}{M}_{21} ] \stackrel {1}T{}^-_3P={} \\ &= {} \stackrel {2}T{}^-_{2} \stackrel {1}T{}^-_{2}R^{-\mathrm{T}} -(q-q^{-1})P \stackrel {1}{M}_{22}[ \stackrel {1}{M}{}_{12}^{-1}]^3 \stackrel {2}{M}_{21} \stackrel {1}{M}_{11} R + (q-q^{-1})P \stackrel {1}T{}^-_{3} \stackrel {2}T{}^-_{1} -{} \\ &\hphantom{={}}- (q-q^{-1})[ \stackrel {2}T{}^-_1- \stackrel {2}{M}_{21} ] \stackrel {1}T{}^-_3P={} \\ &= {}\stackrel {2}T{}^-_{2} \stackrel {1}T{}^-_{2}R^{-\mathrm{T}} -(q-q^{-1})P \stackrel {1}T{}^-_{3} \stackrel {2}{M}_{21} + (q-q^{-1})P \stackrel {1}T{}^-_{3} \stackrel {2}T{}^-_{1} -{} \\ &\hphantom{={}}- (q-q^{-1})[ \stackrel {2}T{}^-_1- \stackrel {2}{M}_{21} ] \stackrel {1}T{}^-_3P={} \\ &= {}\stackrel {2}T{}^-_{2} \stackrel {1}T{}^-_{2}R^{-\mathrm{T}} + (q-q^{-1})P \stackrel {1}T{}^-_{3}[ \stackrel {2}T{}^-_{1}- \stackrel {2}{M}_{21}] - (q-q^{-1})[ \stackrel {2}T{}^-_1- \stackrel {2}{M}_{21} ] \stackrel {1}T{}^-_3P . \end{aligned}$$
Note that if the groupoid condition
$$M_{22}M_{12}^{-1}M_{11}-M_{21}=0,$$
is satisfied, we obtain homogeneous commutation relations
$$R^{-\mathrm{T}} \stackrel{1} {T}{}^-_{2} \stackrel{2} {T}{}^-_{2} = \stackrel{2} {T}{}^-_{2} \stackrel{1} {T}{}^-_{2}R^{-\mathrm{T}}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekhov, L.O. Cluster variables for affine Lie–Poisson systems. Theor Math Phys 217, 1987–2004 (2023). https://doi.org/10.1134/S0040577923120140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923120140

Keywords

Navigation