Skip to main content
Log in

A new solvable two-matrix model and the BKP tau function

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We present exactly solvable modifications of the two-matrix Zinn-Justin–Zuber model and write it as a tau function. The grand partition function of these matrix integrals is written as the fermion expectation value. The perturbation theory series is written explicitly in terms of a series in strict partitions. The related string equations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mironov and A. Morozov, “Superintegrability of Kontsevich matrix model,” Eur. Phys. J. C, 81, 270, 11 pp. (2021); arXiv: 2011.12917.

    Article  ADS  Google Scholar 

  2. A. Alexandrov, “Intersection numbers on \(\overline{\mathcal M}_{g,n}\) and BKP hierarchy,” JHEP, 09, 013, 14 pp. (2021); arXiv: 2012.07573.

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Lee, “A square root of Hurwitz numbers,” Manuscripta Math., 162, 99–113 (2020); arXiv: 1807.03631.

    Article  MathSciNet  Google Scholar 

  4. M. Vuletić, “The shifted Schur process and asymptotics of large random strict plane partitions,” Internat. Math. Res. Not. IMRN, 2007, rnm043, 53 pp. (2007); arXiv: math-ph/0702068.

    MathSciNet  Google Scholar 

  5. A. Mironov, A. Morozov, and S. Natanzon, “Cut-and-join structure and integrability for spin Hurwitz numbers,” Eur. Phys. J. C, 80, 97, 16 pp. (2020); arXiv: 1904.11458.

    Article  ADS  Google Scholar 

  6. A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, and A. Yu. Orlov, “Around spin Hurwitz numbers,” Lett. Math. Phys., 111, 124, 39 pp. (2021); arXiv: 2012.09847.

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Alexandrov, “KdV solves BKP,” Proc. Natl. Acad. Sci. USA, 118, e2101917118, 2 pp. (2021); arXiv: 2012.10448.

    Article  MathSciNet  Google Scholar 

  8. A. D. Mironov and A. Morozov, “Generalized \(Q\)-functions for GKM,” Phys. Lett. B, 819, 136474, 12 pp. (2021); arXiv: 2101.08759.

    Article  MathSciNet  Google Scholar 

  9. A. Mironov, A. Morozov, and A. Zhabin, “Connection between cut-and-join and Casimir operators,” Phys. Lett. B, 822, 136668, 12 pp. (2021); arXiv: 2105.10978.

    Article  MathSciNet  Google Scholar 

  10. A. Mironov, A. Morozov, and A. Zhabin, “Spin Hurwitz theory and Miwa transform for the Schur Q-functions,” Phys. Lett. B, 829, 137131, 6 pp. (2022); arXiv: 2111.05776.

    Article  MathSciNet  Google Scholar 

  11. A. Mironov, V. Mishnyakov, A. Morozov, and A. Zhabin, “Natanzon–Orlov model and refined superintegrability,” Phys. Lett. B, 829, 137041, 5 pp. (2022); arXiv: 2112.11371.

    Article  MathSciNet  Google Scholar 

  12. C. A. Tracy and H. Widom, “A limit theorem for shifted Schur measures,” Duke Math. J., 123, 171–208 (2004); arXiv: math.PR/0210255.

    Article  MathSciNet  Google Scholar 

  13. A. Yu. Orlov, “Hypergeometric functions related to Schur \(Q\)-Polynomials and the \(B\)KP equation,” Theoret. and Math. Phys., 137, 1574–1589 (2003); arXiv: math-ph/0302011.

    Article  MathSciNet  Google Scholar 

  14. J. J. C. Nimmo and A. Yu. Orlov, “A relationship between rational and multi-soliton solutions of the BKP hierarchy,” Glasg. Math. J., 47, 149–168 (2005).

    Article  MathSciNet  Google Scholar 

  15. S. Matsumoto, “\(\alpha\)-Pfaffian, Pfaffian point process and shifted Schur measure,” Linear Algebra Appl., 403, 369–398 (2005).

    Article  MathSciNet  Google Scholar 

  16. J. W. van de Leur and A. Yu. Orlov, “Random turn walk on a half line with creation of particles at the origin,” Phys. Lett. A, 373, 2675–2681 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Harnad, J. W. van de Leur, and A. Yu. Orlov, “Multiple sums and integrals as neutral BKP tau functions,” Theoret. and Math. Phys., 168, 951–962 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. N. Sergeev, “The tensor algebra of the identity representation as a module over the Lie superalgebras \(\mathfrak Gl(n,m)\) and \(Q(n)\),” Math. USSR-Sb., 51, 419–427 (1985).

    Article  Google Scholar 

  19. V. N. Ivanov, “Dimensions of skew shifted Young diagrams and projective characters of the infinite symmetric group,” J. Math. Sci. (N. Y.), 96, 3517–3530 (1999); arXiv: math/0303169.

    Article  MathSciNet  Google Scholar 

  20. A. Eskin, A. Okounkov, and R. Pandharipande, “The theta characteristic of a branched covering,” Adv. Math., 217, 873–888 (2008).

    Article  MathSciNet  Google Scholar 

  21. J. Stembridge, “On Schur’s \(Q\)-functions and the primitive idempotents of a commutative Hecke algebra,” J. Algebraic Combin., 1, 71–95 (1992).

    Article  MathSciNet  Google Scholar 

  22. Y. You, “Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups,” in: Infinite-Dimensional Lie Algebras and Groups (CIRM, Luminy, Marseille, France, July 4–8, 1988, Advanced Series in Mathematical Physics, Vol. 7, V. G. Kac, ed.), World Sci., Teaneck, NJ (1989), pp. 449–464.

    Google Scholar 

  23. J. J. C. Nimmo, “Hall–Littlewood symmetric functions and the BKP equation,” J. Phys. A, 23, 751–760 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, and A. Orlov, “Matrix models of two-dimensional gravity and Toda theory,” Nucl. Phys. B, 357, 565–618 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Kharchev, A. Marshakov, A. Mironov, A. Orlov, and A. Zabrodin, “Matrix models among integrable theories: Forced hierarchies and operator formalism,” Nucl. Phys. B, 366, 569–601 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and A. V. Zabrodin, “Unification of all string models with \(c<1\),” Phys. Lett. B, 275, 311–314 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov, “Generalized Kazakov–Migdal–Kontsevich model: Group theory aspects,” Internat. J. Modern Phys. A, 10, 2015–2051 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  28. J. W. van de Leur, “Matrix integrals and geometry of spinors,” J. Nonlinear Math. Phys., 8, 288–310 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  29. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type,” Phys. D, 4, 343–365 (1982).

    Article  MathSciNet  Google Scholar 

  30. P. Zinn-Justin, “HCIZ integral and 2D Toda lattice hierarchy,” Nucl. Phys. B, 634, 417–432 (2002); P. Zinn-Justin and J.-B. Zuber, “On some integrals over the \(U(N)\) unitary group and their large \(N\) limit,” J. Phys. A, 36, 3173–3193 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Yu. Orlov and D. M. Shcherbin, “Hypergeometric solutions of soliton equations,” Theoret. and Math. Phys., 128, 906–926 (2001); arXiv: nlin/0001001.

    Article  MathSciNet  Google Scholar 

  32. A. Yu. Orlov, “New solvable matrix integrals,” Internat. J. Modern Phys. A, 19, 276–293 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  33. J. Harnad and A. Yu. Orlov, “Fermionic construction of partition functions for two-matrix models and perturbative Schur functions expansions,” J. Phys. A.: Math. Gen., 39, 8783–8809 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  34. A. V. Mikhailov, “Integrability of a two-dimensional generalization of the Toda chain,” Soviet JETP Lett., 30, 414–418 (1979).

    ADS  Google Scholar 

  35. K. Ueno and K. Takasaki, “Toda lattice hierarchy,” in: Group Representations and Systems of Differential Equations (University of Tokyo, Japan, December 20–27, 1982, Advanced Studies in Pure Mathematics, Vol. 4, K. Okamoto, ed.), North-Holland, Amsterdam (1984), pp. 1–95.

    Google Scholar 

  36. K. Takasaki, “Initial value problem for the Toda lattice hierarchy,” in: Group Representations and Systems of Differential Equations (University of Tokyo, December 20–27, 1982, Advanced Studies in Pure Mathematics, Vol. 4, K. Okamoto, ed.), North-Holland, Amsterdam (1984), pp. 139–163.

    Chapter  Google Scholar 

  37. K. Takasaki, “Toda hierarchies and their applications,” Phys. A: Math. Theor., 51, 203001, 35 pp. (2018).

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Yu. Orlov and D. M. Scherbin, “Fermionic representation for basic hypergeometric functions related to Schur polynomials,” arXiv: nlin/0001001.

  39. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford (1995).

    Book  Google Scholar 

  40. E. N. Antonov and A. Yu. Orlov, “Instantons in \(\sigma\) model and tau functions,” arXiv: 1611.02248; “Schwartz–Fateev–Frolov instanton sum and regularized 2KP tau function” (in preparation).

  41. V. Kac and J. van de Leur, “The geometry of spinors and the multicomponent BKP and DKP hierarchies,” in: The Bispectral Problem (Montreal, PQ, 1997, CRM Proceedings and Lecture Notes, Vol. 14, J. Harnad and A. Kasman, eds.), AMS, Providence, RI (1998), pp. 159–202; arXiv: solv-int/9706006.

    Chapter  Google Scholar 

  42. J. van de Leur, “The Adler–Shiota–van Moerbeke formula for the BKP hierarchy,” J. Math. Phys., 36, 4940–4951 (1995); arXiv: 9411159.

    Article  ADS  MathSciNet  Google Scholar 

  43. J. van de Leur, “The \(n\)th reduced BKP hierarchy, the string equation and \(BW_{1+\infty}\)- constraints,” Acta Appl. Math., 44, 185–206 (1996).

    Article  MathSciNet  Google Scholar 

  44. J. Harnad and A. Yu. Orlov, “Polynomial KP and BKP \(\tau\)-functions and correlators,” Ann. H. Poincaré, 22, 3025–3049 (2021).

    Article  MathSciNet  Google Scholar 

  45. M. Bertola, M. Gekhtman, and J. Szmigielski, “Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two-matrix model,” J. Math. Phys., 54, 043517, 25 pp. (2013).

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Jimbo and T. Miwa, “Solitons and infinite dimensional Lie algebras,” Publ. Res. Inst. Math. Sci., 19, 943–1001 (1983).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful A. Alexandrov, A. Morozov, and A. Mironov for attracting attention to [7], [1]. Special thanks go to Andrey Mironov for the fruitful discussions.

Funding

This work was supported by the Russian Science Foundation (grant No. 23-41-00049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Orlov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 457–472 https://doi.org/10.4213/tmf10616.

Appendix A: Partitions. The Schur and projective Schur functions

We recall that a nonincreasing set of nonnegative integers \(\lambda=(\lambda_1,\ldots,\lambda_l)\), is called a partition \({\lambda_1\ge\cdots\ge\lambda_k\ge 0}\), and \(\lambda_i\) are called the parts of \(\lambda\). The sum of parts is called the weight \(|\lambda|\) of \(\lambda\). The number of nonzero parts of \(\lambda\) is called the length of \(\lambda\) and is denoted by \(\ell(\lambda)\) (see [39] for details). Partitions are denoted by Greek letters: \(\lambda,\mu,\ldots{}\,\). Partitions with distinct parts are called strict partitions, we prefer the letters \(\alpha\) and \(\beta\) to denote them. The set of all strict partitions is denoted by \(\mathrm{DP}\).

To define the projective Schur function \(Q_\alpha\), where \(\alpha\in\mathrm{DP}\), at the first step, we define the set of functions \(\{q_i,i\ge 0\}\) by

$$\exp\biggl\{\sum_{m\in\mathbb{Z}^{+}_{\text{odd}}}\frac{2}{m}p_m x^m\biggr\}=\sum_{m\ge 0}x^mq_m(\mathbf p_{\text{odd}}),$$
where now \(\mathbf p_{\text{odd}}=(p_1,p_3,\ldots)\). Next, we define the skew-symmetric matrix
$$Q_{(i,j)}(\mathbf p_{\text{odd}})= q_i(\mathbf p_{\text{odd}})q_j(\mathbf p_{\text{odd}})+2\sum_{k=1}^j(-1)^kq_{i+k}(\mathbf p_{\text{odd}})q_{j-k}(\mathbf p_{\text{odd}}) \;\,\text{if}\;\,(i,j)\neq(0,0),$$
and \(Q_{(i,j)}(\mathbf p_{\text{odd}})=0\) if \((i,j)=(0,0)\). In particular,
$$Q_{(j,0)}(\mathbf p_{\text{odd}})=-Q_{(0,j)}(\mathbf p_{\text{odd}})=q_j(\mathbf p_{\text{odd}})\quad\text{for}\quad j\ge 1.$$
For a strict partition \(\alpha=(\alpha_1,\ldots,\alpha_{2r})\), where \(\alpha_{2r}\ge 0\), the projective Schur function is defined as
$$ Q_\alpha(\mathbf p_{\text{odd}}):= \operatorname{Pf} [Q_{\alpha_i \alpha_j}(\mathbf p_{\text{odd}})]_{1\le i,j\le 2r},\qquad Q_{\varnothing}:=1.$$
(44)

Let \(X\) be a matrix. We put \(p_m=p_m(X)= \operatorname{tr} (X^m-(-X)^m)\), where \(m\) is odd, and call these variables odd power sums. We write \(Q_\alpha(\mathbf p_{\text{odd}}(X))=Q_\alpha(X)\).

Appendix B: Neutral fermions [46]. Scalar product of the projective Schur functions [13]

For \(\alpha=(\alpha_1,\ldots,\alpha_k)\in\mathrm{DP}\) we introduce

$$\Phi_\alpha:=2^{k/2}\phi_{\alpha_1}\ldots\phi_{\alpha_k},\qquad \Phi_{-\alpha}:=(-1)^{\sum_{i=1}^k\alpha_i}\,2^{k/2}\phi_{-\alpha_k}\ldots\phi_{-\alpha_{1}}.$$
We have \(\langle 0|\Phi_{-\alpha}\Phi_\beta|0\rangle=2^{\ell(\alpha)}\delta_{\alpha,\beta}\).

The fermionic formula for projective Schur functions was obtained in [22]:

$$Q_\alpha(\mathbf x)\Delta^*(\mathbf x)= 2^{-N/2}\langle 0|\phi(-x_1^{-1})\ldots\phi(-x_N^{-1})\Phi_\alpha |0\rangle= 2^{-N/2}\langle 0|\Phi_{-\alpha} \phi(x_1)\ldots\phi(x_N) |0\rangle.$$
We have
$$ \begin{aligned} \, &\langle 0|\phi(-v_1^{-1})\ldots \phi(-v_N^{-1})=\Delta^*(v)\sum_{\alpha} 2^{-N/2-\ell(\alpha)} Q_\alpha(v) \langle 0|\Phi_{-\alpha}, \\ &\phi(u_1)\ldots\phi(u_N)|0\rangle=\Delta^*(u)\sum_{\alpha} 2^{-N/2-\ell(\alpha)}Q_\alpha(u) \Phi_{\alpha}|0\rangle. \end{aligned}$$
(45)

Following [13], we consider \(f(x)=\sum_{i\ge 0}f_ix^i\) and write

$$\begin{aligned} \, &2^{-N}\sum_\alpha\Phi_\alpha|0\rangle \langle 0|\Phi_{-\alpha}\prod_{i=1}^{\ell(\alpha)} f_{\alpha_i}= \\ &=\frac{1}{(2\pi i)^N}\oint\ldots\oint\phi(u_1)\ldots\phi(u_N)|0\rangle\langle 0|\phi(-v_N^{-1})\ldots\phi(-v_1^{-1}) \prod_{i=1}^N\frac{du_i\,dv_i}{u_iv_i}f(u_i^{-1}v_i^{-1})= \\ &=\frac{1}{(2\pi i)^N}\oint\ldots\oint \Delta^*(u)\Delta^*(v)Q_\alpha(u)Q_\beta(v)\sum_{\alpha,\beta}\Phi_\alpha|0\rangle \langle 0|\Phi_{-\beta}2^{-N-\ell(\alpha)-\ell(\beta)} \prod_{i=1}^N\frac{du_i\,dv_i}{u_iv_i}f(u_i^{-1}v_i^{-1}). \end{aligned}$$
Equation (12) then follows:
$$\frac{1}{(2\pi i)^N}\oint\ldots\oint\Delta^*(u)\Delta^*(v)Q_\alpha(u)Q_\beta(v)2^{-\ell(\alpha)-\ell(\beta)} \prod_{i=1}^N\frac{du_idv_i}{u_iv_i}f(u_i^{-1}v_i^{-1})=\prod_{i=1}^N f_{\alpha_i}.$$

Appendix C: Fermionic representation and string equations for the modified $$I_N(\mathbf p^{(1)},\mathbf p^{(2)}; f)$$ integral

We consider

$$\begin{aligned} \, &I_N(\mathbf p^{(1)},\mathbf p^{(2)};f)=\langle N,-N| e^{F(\mathbf p^{(1)},\mathbf p^{(2)})}|0,0\rangle, \\ &F(\mathbf p^{(1)},\mathbf p^{(2)})= -\frac{1}{4\pi^2}\oint\!\oint f(u^{-1}v^{-1})\psi^{(1)}(u,\mathbf p^{(1)})\psi^{\dagger(2)}(v,\mathbf p^{(2)})\frac{du\,dv}{uv}= \sum_{j} f_j \psi^{(1)}_j\psi^{\dagger(2)}_{-j-1}, \end{aligned}$$
where
$$f(z)=\sum_j f_j z^j,\qquad\psi(z)=\sum_j z^j\psi_j,\qquad\psi^\dagger(z)=\sum_j z^j\psi^\dagger_{-j-1},$$
and for \(j> N\), we have \(\langle N|\psi_j=0\) and \(\langle 0|\psi^\dagger_{-1-j}=0\). Then
$$ \psi(ze^{y/2})\psi^\dagger(ze^{-y/2})=\sum_{m,n}\Omega_{\mathrm F}(m,n)z^{-m}y^n,$$
(46)
where
$$ \Omega_{\mathrm F}^{}=\sum_{j}\biggl(m+\frac{1}{2}\biggr)^{\!n}\psi_j^{}\psi^\dagger_{j+m}.$$
(47)
We let \(\hat{\mathbf p}\) denote the collections \((p_1,p_2,\ldots)\) and \((\partial_{p_1},\partial_{p_2},\ldots)\). The bosonic version is
$$ \Omega_{\mathrm B}(m,n,\hat{\mathbf p})=- \mathop{\rm res}\limits _z\; \,\mathopen{\vdots\kern1pt} (V(z,\hat{\mathbf p})z^{-1/2}(z^mD^nz^{1/2}V(z,-\hat{\mathbf p})) \mathclose{\kern1pt\vdots}\, \,dz.$$
(48)

Unlike string equations, typical of any “diagonal” series (7), string equations that select the prefactor \(f\) in (7) are rather different from the case of a two-matrix model with two Hermitian matrices. We have

$$L=\sum_{i}x(i)\psi^{(1)}_i\psi^{\dagger(1)}_{i+m},\quad M=\sum_{i}y(i)\psi^{(2)}_i\psi^{\dagger(2)}_{i-m},\qquad m>0,$$
and require that \(M|0,0\rangle=0\) for \(m>0\). We have
$$\sum_{i} y(i)\psi^{(2)}_i\psi^{\dagger(2)}_{i-m}|0,0\rangle= y(0)\psi^{(2)}_{0}\psi^{\dagger(2)}_{-m}|0,0\rangle +\cdots+y(m-1)\psi^{(2)}_{m-1}\psi^{\dagger(2)}_{}{-1}|0,0\rangle=0$$
Thus, \(y(i)=0\) for \(i=0,\ldots,m-1\). Therefore, we can take \(y(i)=i(i-1)\ldots(i-m+1)\). Then, the condition
$$\biggl[L+M,\sum_{i}f_i\psi^{(1)}_i\psi^{\dagger(2)}_{-i-1}\biggr]=0.$$
yields \(x(i+m)f_{i+m}=y(i)f_i\). Setting \(f_i=1/\Gamma(i+1)\) and \(m=1\), we can take \(x(i)=i(i-1)\) and \(y(i)=i\) (which is the Virasoro generator denoted by \(L_{-1}\)).

The bosonized versions are as follows:

$$ L^{\mathrm B}(\hat{\mathbf t}^{(1)})I(\mathbf t^{(1)},\mathbf t^{(2)};f)=M^{\mathrm B}(\hat{\mathbf t}^{(2)})I(\mathbf t^{(1)},\mathbf t^{(2)};f).$$
(49)
The explicit examples will be written in a more detailed presentation.

Appendix D: Hirota equations for the two-component BKP hierarchy

We have the fermionic form of the two-component BKP tau function

$$ \tau(\mathbf p^{(1)},\mathbf p^{(2)})=\langle 0\bigg| \exp\biggl\{\sum_{i=1,2}\,\sum_{m\in\mathbb{Z}^{+}_{\text{odd}}}\frac{2}{m}p_m^{(i)} \sum_{j\in\mathbb{Z}^{}_{}}\phi^{(i)}_{j-m}\phi^{(i)}_{-j}\biggr\} h\bigg|0\rangle,$$
(50)
where
$$h=\exp\biggl\{\sum_{i,j\in\mathbb{Z}}(a_{i,j} \,\mathopen{:\kern1pt} \phi^{(1)}\phi^{(1)} \mathclose{\kern1pt :}\, + b_{i,j} \,\mathopen{:\kern1pt} \phi^{(2)}\phi^{(2)} \mathclose{\kern1pt :}\, +f_{i,j}\phi^{(1)}\phi^{(2)})\biggr\}.$$
The fermionic form of the two-component hierarchy is
$$ \sum_{i=1,2}\sum_{j\in \mathbb{Z}}(-1)^j\phi^{(i)}_jh\otimes\phi^{(i)}_{-j}h=\frac{1}{2} h\phi^{(i)}_0\otimes h\phi^{(i)}_0.$$
(51)
The bilinear Hirota equations are the bosonized version of (51). They can be found in [41]. In short, we have
$$\begin{aligned} \, & \mathop{\rm res}\limits _z\bigl(\tau(\mathbf p^{(1)}+\epsilon^{(1)}-[z],\mathbf p^{(2)}+\epsilon^{(2)}) \tau(\mathbf p^{(1)}+[z],\mathbf p^{(2)})\bigr)\frac{dz}{z}+{} \\ &{}+ \mathop{\rm res}\limits _z\bigl(\tau(\mathbf p^{(1)}+\epsilon^{(1)},\mathbf p^{(2)}+\epsilon^{(2)}-[z]) \tau(\mathbf p^{(1)},\mathbf p^{(2)})+[z]\bigr)\frac{dz}{z}-{} \\ &{}-\tau(\mathbf p^{(1)}+\epsilon^{(1)},\mathbf p^{(2)}+\epsilon^{(2)})\tau(\mathbf p^{(1)},\mathbf p^{(2)})=0, \end{aligned}$$
where the sets \(\epsilon^{(i)}=(\epsilon^{(i)}_1,\epsilon^{(i)}_3,\ldots)\) are the sets of arbitrary parameters and where \([z]\) denotes the set \((2z^{-1},2z^{-3},2z^{-5},\ldots)\). The vanishing condition for all coefficients of the Taylor series in these parameters gives bilinear differential equations for the tau functions, which we call the Hirota differential equations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, E.N., Orlov, A.Y. A new solvable two-matrix model and the BKP tau function. Theor Math Phys 217, 1807–1820 (2023). https://doi.org/10.1134/S0040577923120012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923120012

Keywords

Navigation