Skip to main content
Log in

The structure of quantum corrections and exact results in supersymmetric theories from the higher covariant derivative regularization

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We review some recent results of the studies of quantum corrections in supersymmetric theories derived using Slavnov’s higher covariant derivative regularization. In particular, we demonstrate that the \(\beta\)-function of \(\mathcal{N}=1\) supersymmetric theories is related to the anomalous dimensions of matter superfields by the NSVZ relation if the theory is regularized by higher covariant derivatives and the renormalization group functions are defined in terms of the bare couplings, because the corresponding loop corrections are given by integrals of double total derivatives in the momentum space. For the standard renormalization-group functions, we show that an all-loop NSVZ renormalization scheme is given by the HD\(\,+\,\)MSL renormalization prescription when the higher covariant derivative regularization is supplemented by minimal subtractions of logarithms. Applications of these results to the precise calculations in various supersymmetric theories are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. A. A. Slavnov, “Invariant regularization of non-linear chiral theories,” Nucl. Phys. B, 31, 301–315 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  2. A. A. Slavnov, “Invariant regularization of gauge theories,” Theoret. and Math. Phys., 13, 1064–1066 (1972).

    Article  ADS  Google Scholar 

  3. A. A. Slavnov, “Pauli–Villars regularization for non-Abelian gauge theories,” Theoret. and Math. Phys., 33, 977–981 (1977).

    Article  ADS  Google Scholar 

  4. W. Siegel, “Supersymmetric dimensional regularization via dimensional reduction,” Phys. Lett. B, 84, 193–196 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  5. W. Siegel, “Inconsistency of supersymmetric dimensional regularization,” Phys. Lett. B, 94, 37–40 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  6. V. K. Krivoshchekov, “Invariant regularization for supersymmetric gauge theories,” Theoret. and Math. Phys., 36, 745–752 (1978).

    Article  MathSciNet  Google Scholar 

  7. P. West, “Higher derivative regulation of supersymmetric theories,” Nucl. Phys. B, 268, 113–124 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Exact Gell-Mann–Low function of supersymmetric Yang–Mills theories from instanton calculus,” Nucl. Phys. B, 229, 381–393 (1983).

    Article  ADS  Google Scholar 

  9. D. R. T. Jones, “More on the axial anomaly in supersymmetric Yang–Mills theory,” Phys. Lett. B, 123, 45–46 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  10. V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “The Gell-Mann–Low function in supersymmetric gauge theories. Instantons versus the traditional approach,” Sov. J. Nucl. Phys., 43, 294–296 (1986).

    Google Scholar 

  11. M. A. Shifman and A. I. Vainshtein, “Solution of the problem of anomalies in supersymmetric gauge theories, and the operator expansion,” Soviet Phys. JETP, 64, 428–440 (1986); “Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion,” Nucl. Phys. B, 277, 456–486 (1986).

    ADS  MathSciNet  Google Scholar 

  12. W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, “Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories,” Phys. Rev. D, 18, 3998–4017 (1978).

    Article  ADS  Google Scholar 

  13. L. V. Avdeev and O. V. Tarasov, “The three-loop beta-function in the \(N=1,2,4\) supersymmetric Yang–Mills theories,” Phys. Lett. B, 112, 356–358 (1982).

    Article  ADS  Google Scholar 

  14. I. Jack, D. R. T. Jones, and C. G. North, “\(N=1\) supersymmetry and the three-loop gauge \(\beta\)-function,” Phys. Lett. B, 386, 138–140 (1996).

    Article  ADS  Google Scholar 

  15. I. Jack, D. R. T. Jones, and C. G. North, “Scheme dependence and the NSVZ \(\beta\)-function,” Nucl. Phys. B, 486, 479–499 (1997); arXiv: hep-ph/9609325.

    Article  ADS  Google Scholar 

  16. I. Jack, D. R. T. Jones, and A. Pickering, “The connection between DRED and NSVZ,” Phys. Lett. B, 435, 61–66 (1998); arXiv: hep-ph/9805482.

    Article  ADS  Google Scholar 

  17. R. V. Harlander, D. R. T. Jones, P. Kant, L. Mihaila, and M. Steinhauser, “Four-loop \(\beta\) function and mass anomalous dimension in dimensional reduction,” JHEP, 12, 024, 13 pp. (2006); arXiv: hep-ph/0610206.

    Article  ADS  MathSciNet  Google Scholar 

  18. L. Mihaila, “Precision calculations in supersymmetric theories,” Adv. High Energy Phys., 2013, 607807, 64 pp. (2013); arXiv: 1310.6178.

    Article  MathSciNet  Google Scholar 

  19. A. L. Kataev and K. V. Stepanyantz, “Scheme independent consequence of the NSVZ relation for \(\mathcal{N}\) = 1 SQED with \(N_f\) flavors,” Phys. Lett. B, 730, 184–189 (2014); arXiv: 1311.0589.

    Article  ADS  Google Scholar 

  20. A. L. Kataev and K. V. Stepanyantz, “The NSVZ \(\beta\)-function in supersymmetric theories with different,” Theoret. and Math. Phys., 181, 1531–1540 (2014); arXiv: 1405.7598.

    Article  ADS  MathSciNet  Google Scholar 

  21. B. S. DeWitt, Dynamical Theory of Groups and Fields, Gordon & Breach, New York (1965).

    Google Scholar 

  22. L. F. Abbott, “The background field method beyond one loop,” Nucl. Phys. B, 185, 189–203 (1981).

    Article  ADS  Google Scholar 

  23. L. F. Abbott, “Introduction to the background field method,” Acta Phys. Polon. B, 13, 33–50 (1982).

    MathSciNet  Google Scholar 

  24. S. J. Gates, Jr., M. T. Grisaru, M. Roček, and W. Siegel, Superspace or One Thousand and One Lessons in Supersymmetry (Frontiers in Physics, Vol. 58), AIP, Melville, NY (1983); arXiv: hep-th/0108200.

    Google Scholar 

  25. P. West, Introduction to Supersymmetry and Supergravity, World Sci., Singapore (1990).

    Book  Google Scholar 

  26. I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity: Or a Walk Through Superspace, IOP, Bristol, UK (1998).

    Google Scholar 

  27. O. Piguet and K. Sibold, “Renormalization of \(N=1\) supersymmetrical Yang–Mills theories: (I). The classical theory,” Nucl. Phys. B, 197, 257–271 (1982).

    Article  ADS  Google Scholar 

  28. O. Piguet and K. Sibold, “Renormalization of \(N=1\) supersymmetrical Yang–Mills theories: (II). The radiative corrections,” Nucl. Phys. B, 197, 272–289 (1982).

    Article  ADS  Google Scholar 

  29. I. V. Tyutin, “Renormalization of supergauge theories with unextended supersymmetry,” Sov. J. Nucl. Phys., 37, 453–458 (1983).

    Google Scholar 

  30. J. W. Juer and D. Storey, “Nonlinear renormalization in superfield gauge theories,” Phys. Lett. B, 119, 125–127 (1982).

    Article  ADS  Google Scholar 

  31. J. W. Juer and D. Storey, “One loop renormalization of superfield Yang–Mills theories,” Nucl. Phys. B, 216, 185–208 (1983).

    Article  ADS  Google Scholar 

  32. A. E. Kazantsev, M. D. Kuzmichev, N. P. Meshcheriakov, S. V. Novgorodtsev, I. E. Shirokov, M. B. Skoptsov, and K. V. Stepanyantz, “Two-loop renormalization of the Faddeev–Popov ghosts in \(\mathcal{N}=1\) supersymmetric gauge theories regularized by higher derivatives,” JHEP, 06, 020, 22 pp. (2018); arXiv: 1805.03686.

    Article  ADS  MathSciNet  Google Scholar 

  33. L. D. Faddeev and A. A. Slavnov, “Gauge fields. Introduction to quantum theory,” (Frontiers in Physics, Vol. 50), Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, MA (1980).

    Google Scholar 

  34. S. S. Aleshin, A. E. Kazantsev, M. B. Skoptsov, and K. V. Stepanyantz, “One-loop divergences in non-Abelian supersymmetric theories regularized by BRST-invariant version of the higher derivative regularization,” JHEP, 05, 014, 21 pp. (2016); arXiv: 1603.04347.

    Article  ADS  Google Scholar 

  35. A. E. Kazantsev, M. B. Skoptsov, and K. V. Stepanyantz, “One-loop polarization operator of the quantum gauge superfield for \(\mathcal{N}=1\) SYM regularized by higher derivatives,” Modern Phys. Lett. A, 32, 1750194, 13 pp. (2017); arXiv: 1709.08575.

    Article  ADS  MathSciNet  Google Scholar 

  36. A. L. Kataev and K. V. Stepanyantz, “NSVZ scheme with the higher derivative regularization for \(\mathcal{N} = 1\) SQED,” Nucl. Phys. B, 875, 459–482 (2013); arXiv: 1305.7094.

    Article  ADS  MathSciNet  Google Scholar 

  37. K. V. Stepanyantz, “Non-renormalization of the \(V\bar cc\)-vertices in \(\mathcal{N}=1\) supersymmetric theories,” Nucl. Phys. B, 909, 316–335 (2016); arXiv: 1603.04801.

    Article  ADS  MathSciNet  Google Scholar 

  38. J. C. Taylor, “Ward identities and charge renormalization of the Yang–Mills field,” Nucl. Phys. B, 33, 436–444 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  39. A. A. Slavnov, “Ward identities in gauge theories,” Theoret. and Math. Phys., 10, 99–104 (1972).

    Article  ADS  Google Scholar 

  40. M. D. Kuzmichev, N. P. Meshcheriakov, S. V. Novgorodtsev, I. E. Shirokov, and K. V. Stepanyantz, “Finiteness of the two-loop matter contribution to the triple gauge-ghost vertices in \(\mathcal N=1\) supersymmetric gauge theories regularized by higher derivatives,” Phys. Rev. D, 104, 025008, 12 pp. (2021); arXiv: 2102.12314.

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Kuzmichev, N. Meshcheriakov, S. Novgorodtsev, V. Shatalova, I. Shirokov, and K. Stepanyantz, “Finiteness of the triple gauge-ghost vertices in \(\mathcal {N}=1\) supersymmetric gauge theories: the two-loop verification,” Eur. Phys. J. C, 82, 69, 12 pp. (2022); arXiv: 2111.04031.

    Article  ADS  Google Scholar 

  42. A. A. Soloshenko and K. V. Stepanyantz, “Three-loop \(\beta\)-function of \(N=1\) supersymmetric electrodynamics regularized by higher derivatives,” Theoret. and Math. Phys., 140, 1264–1282 (2004).

    Article  ADS  Google Scholar 

  43. A. V. Smilga and A. Vainshtein, “Background field calculations and nonrenormalization theorems in 4d supersymmetric gauge theories and their low-dimensional descendants,” Nucl. Phys. B, 704, 445–474 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  44. K. V. Stepanyantz, “Derivation of the exact NSVZ \(\beta\)-function in \(N=1\) SQED, regularized by higher derivatives, by direct summation of Feynman diagrams,” Nucl. Phys. B, 852, 71–107 (2011); arXiv: 1102.3772.

    Article  ADS  MathSciNet  Google Scholar 

  45. K. V. Stepanyantz, “The \(\beta\)-function of \(\mathcal{N}=1\) supersymmetric gauge theories regularized by higher covariant derivatives as an integral of double total derivatives,” JHEP, 10, 011, 48 pp. (2019); arXiv: 1908.04108.

    Article  ADS  MathSciNet  Google Scholar 

  46. A. I. Vainshtein, V. I. Zakharov, and M. A. Shifman, “Gell-Mann–Low function in supersymmetric electrodynamics,” JETP Lett., 42, 224–227 (1985).

    ADS  Google Scholar 

  47. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Exact Gell-Mann–Low function in supersymmetric electrodynamics,” Phys. Lett. B, 166, 334–336 (1986).

    Article  ADS  Google Scholar 

  48. A. E. Kazantsev and K. V. Stepanyantz, “Relation between two-point Green’s functions of \(\mathcal N=1\) SQED with \(N_f\) flavors, regularized by higher derivatives, in the three-loop approximation,” JETP, 120, 618–631 (2015); arXiv: 1410.1133.

    Article  ADS  Google Scholar 

  49. V. Yu. Shakhmanov and K. V. Stepanyantz, “Three-loop NSVZ relation for terms quartic in the Yukawa couplings with the higher covariant derivative regularization,” Nucl. Phys. B, 920, 345–367 (2017); arXiv: 1703.10569.

    Article  ADS  MathSciNet  Google Scholar 

  50. A. E. Kazantsev, V. Yu. Shakhmanov, and K. V. Stepanyantz, “New form of the exact NSVZ \(\beta\)-function: The three-loop verification for terms containing Yukawa couplings,” JHEP, 04, 130, 36 pp. (2018); arXiv: 1803.06612.

    Article  ADS  MathSciNet  Google Scholar 

  51. K. Stepanyantz, “The all-loop perturbative derivation of the NSVZ \(\beta\)-function and the NSVZ scheme in the non-Abelian case by summing singular contributions,” Eur. Phys. J. C, 80, 911, 28 pp. (2020); arXiv: 2007.11935.

    Article  ADS  Google Scholar 

  52. A. E. Kazantsev and K. V. Stepanyantz, “Two-loop renormalization of the matter superfields and finiteness of \(\mathcal{N}=1\) supersymmetric gauge theories regularized by higher derivatives,” JHEP, 06, 108 (2020); arXiv: 2004.00330.

    Article  ADS  MathSciNet  Google Scholar 

  53. A. Parkes and P. West, “Finiteness in rigid supersymmetric theories,” Phys. Lett. B, 138, 99–104 (1984).

    Article  ADS  Google Scholar 

  54. P. West, “The Yukawa \(\beta\)-function in \(N=1\) rigid supersymmetric theories,” Phys. Lett. B, 137, 371–373 (1984).

    Article  ADS  Google Scholar 

  55. S. Heinemeyer, J. Kubo, M. Mondragón, O. Piguet, K. Sibold, W. Zimmermann, and G. Zoupanos, “Reduction of couplings and its application in particle physics. Finite theories. Higgs and top mass predictions,” arXiv: 1411.7155.

  56. S. Heinemeyer, M. Mondragón, N. Tracas, and G. Zoupanos, “Reduction of couplings and its application in particle physics,” Phys. Rep., 814, 1–43 (2019); arXiv: 1904.00410.

    Article  ADS  MathSciNet  Google Scholar 

  57. K. Stepanyantz, “Exact \(\beta\)-functions for \(\mathcal{N}=1\) supersymmetric theories finite in the lowest loops,” Eur. Phys. J. C, 81, 571, 11 pp. (2021); arXiv: 2105.00900.

    Article  ADS  Google Scholar 

  58. D. I. Kazakov, “Finite \(N=1\) SUSY field theories and dimensional regularization,” Phys. Lett. B, 179, 352–354 (1986).

    Article  ADS  Google Scholar 

  59. A. V. Ermushev, D. I. Kazakov, and O. V. Tarasov, “Finite \(N=1\) supersymmetric grand unified theories,” Nucl. Phys. B, 281, 72–84 (1987).

    Article  ADS  Google Scholar 

  60. C. Lucchesi, O. Piguet, and K. Sibold, “Vanishing \(\beta\)-functions in \(N=1\) supersymmetric gauged theories,” Helv. Phys. Acta, 61, 321–344 (1988).

    MathSciNet  Google Scholar 

  61. C. Lucchesi, O. Piguet, and K. Sibold, “Necessary and sufficient conditions for all order vanishing \(\beta\)-functions in supersymmetric Yang–Mills theories,” Phys. Lett. B, 201, 241–244 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  62. A. J. Parkes and P. C. West, “Three-loop results in two-loop finite supersymmetric gauge theories,” Nucl. Phys. B, 256, 340–352 (1985).

    Article  ADS  Google Scholar 

  63. M. T. Grisaru, B. Milewski, and D. Zanon, “The structure of UV divergences in SS YM theories,” Phys. Lett. B, 155, 357–363 (1985).

    Article  ADS  Google Scholar 

  64. M. Shifman, “Little miracles of supersymmetric evolution of gauge couplings,” Int. J. Mod. Phys. A, 11, 5761–5784 (1996); arXiv: hep-ph/9606281; Erratum, 14, 1809–1809 (1999).

    Article  ADS  Google Scholar 

  65. D. S. Korneev, D. V. Plotnikov, K. V. Stepanyantz, and N. A. Tereshina, “The NSVZ relations for \(\mathcal{N} = 1\) supersymmetric theories with multiple gauge couplings,” JHEP, 10, 046, 45 pp. (2021); arXiv: 2108.05026.

    Article  ADS  MathSciNet  Google Scholar 

  66. D. Ghilencea, M. Lanzagorta, and G. G. Ross, “Unification predictions,” Nucl. Phys. B, 511, 3–24 (1998); arXiv: hep-ph/9707401.

    Article  ADS  Google Scholar 

  67. O. V. Haneychuk, V. Yu. Shirokova, and K. V. Stepanyantz, “Three-loop \(\beta\)-functions and two- loop anomalous dimensions for MSSM regularized by higher covariant derivatives in an arbitrary supersymmetric subtraction scheme,” JHEP, 09, 189, 32 pp. (2022); arXiv: 2207.11944.

    Article  ADS  MathSciNet  Google Scholar 

  68. I. Jack, D. R. T. Jones, and A. F. Kord, “Snowmass benchmark points and three-loop running,” Ann. Phys., 316, 213–233 (2005); arXiv: hep-ph/0408128.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant No. 21-12-00129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Stepanyantz.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 630–648 https://doi.org/10.4213/tmf10510.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanyantz, K.V. The structure of quantum corrections and exact results in supersymmetric theories from the higher covariant derivative regularization. Theor Math Phys 217, 1954–1968 (2023). https://doi.org/10.1134/S0040577923120127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923120127

Keywords

Navigation