Skip to main content

Advertisement

Log in

Donepezil and Embelin Loaded Nanostructured Lipid Carriers for Direct Brain Delivery as An Intervention for Alzheimer’s Disease: Formulation Design, Optimization and Evaluation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Donepezil hydrochloride (DPL) and Embelin (EMB) loaded Nanostructured Lipid Carriers (NLCs) have been developed and optimized to achieve optimal drug loading, safer nasal delivery, effective neuronal/cell uptake, enhanced brain accessibility, controlled release, and desired therapeutic effect. Molecular docking studies demonstrated that both drugs bind effectively to AchE with interaction energies of -48.5319 and − 65.7525, respectively, indicating a synergistic approach. The hydrophobic interactions with target proteins facilitate the transportation of drugs through brain hydrophobic channels to provide a desired pharmacological response. N2a cell line investigation advised a 1:1 ratio of DPL and EMB to have the greatest possible synergistic effect based on the MTT assay. NLCs were fabricated by hot emulsification probe sonication method and optimized using QbD-based Central Composite Rotatable Design (CCRD). Optimized NLCs with a diameter of 180.2 nm were suitable for axonal uptake. A low Polydispersity index (PDI) score of 0.37 and Zeta Potential (ZP) of -12 mV indicated a uniform monodisperse system with persistent and stable dispersion properties. The NLCs demonstrated sustained drug release, DPL released at 90.72 ± 1.00%, and EMB at 81.30 ± 0.52% in 24 h. The Korsemeyer-Peppas model proved to be the most accurate fit due to its strong correlation. Ex vivo permeation and CLSM studies revealed superior goat nasal mucosa penetration of NLCs over suspension with a higher fluorescence level, up to 35 μm. NLCs treated nasal mucosa exhibited no erosion or interstitial gaps in the histopathological study. Moreover, NLCs were nontoxic and non-irritating, with a HET CAM score of 0.68 ± 0.05, indicating safe nasal delivery. The cellular uptake study showed a preponderance of the NLCs in the Cell’s cytoplasm, indicating ready uptake by N2a cells. Hence, intranasal therapy with the DPL and EMB-loaded NLCs could be a practical and promising implementation. Further in vivo, and clinical studies will be required to establish the formulation’s efficacy in treating Alzheimer’s disease (AD).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. S. Wegmann, J. Biernat, E. Mandelkow, A current view on Tau protein phosphorylation in Alzheimer’s disease, Curr. Opin. Neurobiol. 69 (2021) 131–138. https://doi.org/10.1016/j.conb.2021.03.003.

    Article  CAS  PubMed  Google Scholar 

  2. J. Cummings, G. Lee, A. Ritter, M. Sabbagh, K. Zhong, Alzheimer’s disease drug development pipeline: 2019, Alzheimer’s Dement. Transl. Res. Clin. Interv. 5 (2019) 272–293. https://doi.org/10.1016/j.trci.2019.05.008.

    Article  Google Scholar 

  3. J.M. Ringman, A. Goate, C.L. Masters, N.J. Cairns, A. Danek, N. Graff-Radford, B. Ghetti, J.C. Morris, Genetic Heterogeneity in Alzheimer Disease and Implications for Treatment Strategies, Curr. Neurol. Neurosci. Rep. 14 (2014) 1–9. https://doi.org/10.1007/S11910-014-0499-8/TABLES/1.

    Article  CAS  Google Scholar 

  4. Y. Yamazaki, N. Zhao, T.R. Caulfield, C.C. Liu, G. Bu, Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies, Nat. Rev. Neurol. 2019 159. 15 (2019) 501–518. https://doi.org/10.1038/s41582-019-0228-7.

  5. O. Pivovarova, A. Höhn, T. Grune, A.F.H. Pfeiffer, N. Rudovich, Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer’s disease?, Ann. Med. 48 (2016) 614–624. https://doi.org/10.1080/07853890.2016.1197416.

    Article  CAS  PubMed  Google Scholar 

  6. D.J. Selkoe, J. Hardy, The amyloid hypothesis of Alzheimer’s disease at 25 years, EMBO Mol. Med. 8 (2016) 595–608. https://doi.org/10.15252/EMMM.201606210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J.L. Cummings, G. Tong, C. Ballard, Treatment Combinations for Alzheimer’s Disease: Current and Future Pharmacotherapy Options, J. Alzheimer’s Dis. 67 (2019) 779–794. https://doi.org/10.3233/JAD-180766.

    Article  Google Scholar 

  8. S. Matsunaga, T. Kishi, N. Iwata, Memantine Monotherapy for Alzheimer’s Disease: A Systematic Review and Meta-Analysis, PLoS One. 10 (2015) e0123289 https://doi.org/10.1371/JOURNAL.PONE.0123289.

    Article  PubMed  PubMed Central  Google Scholar 

  9. K.G. Yiannopoulou, S.G. Papageorgiou, Current and Future Treatments in Alzheimer Disease: An Update, J. Cent. Nerv. Syst. Dis. 12 (2020) 117957352090739. https://doi.org/10.1177/1179573520907397.

    Article  Google Scholar 

  10. J. Rohrer, N. Lupo, A. Bernkop-Schnürch, Advanced formulations for intranasal delivery of biologics, Int. J. Pharm. 553 (2018) 8–20. https://doi.org/10.1016/J.IJPHARM.2018.10.029.

    Article  CAS  PubMed  Google Scholar 

  11. C.T. Lu, Y.Z. Zhao, H.L. Wong, J. Cai, L. Peng, X.Q. Tian, Current approaches to enhance CNS delivery of drugs across the brain barriers, Int. J. Nanomedicine. 9 (2014) 2241–2257. https://doi.org/10.2147/IJN.S61288.

    Article  PubMed  PubMed Central  Google Scholar 

  12. M. Yasir, U. Vir Singh Sara, I. Som, P. Gaur, M. Singh,. Ameeduzzafar, Nose to Brain Drug Delivery: A Novel Approach Through Solid Lipid Nanoparticles, Curr. Nanomedicine. 6 (2016) 105–132. https://doi.org/10.2174/2468187306666160603120318.

    Article  CAS  Google Scholar 

  13. R. Taliyan, V. Kakoty, K.C. Sarathlal, S.S. Kharavtekar, C.R. Karennanavar, Y.K. Choudhary, G. Singhvi, Y. Riadi, S.K. Dubey, P. Kesharwani, Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease, J. Control. Release. 343 (2022) 528–550. https://doi.org/10.1016/J.JCONREL.2022.01.044.

    Article  CAS  PubMed  Google Scholar 

  14. I. Jazuli, Annu, B. Nabi, T. moolakkadath, T. Alam, S. Baboota, J. Ali, Optimization of Nanostructured Lipid Carriers of Lurasidone Hydrochloride Using Box-Behnken Design for Brain Targeting: In Vitro and In Vivo Studies, J. Pharm. Sci. 108 (2019) 3082–3090. https://doi.org/10.1016/J.XPHS.2019.05.001.

  15. N. Khan, F.A. Shah, I. Rana, M.M. Ansari, F. ud Din, S.Z.H. Rizvi, W. Aman, G.Y. Lee, E.S. Lee, J.K. Kim, A. Zeb, Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity, Int. J. Pharm. 577 (2020) 119033. https://doi.org/10.1016/J.IJPHARM.2020.119033.

    Article  CAS  PubMed  Google Scholar 

  16. M.I. Alam, S. Baboota, A. Ahuja, M. Ali, J. Ali, J.K. Sahni, Intranasal infusion of nanostructured lipid carriers (NLC) containing CNS acting drug and estimation in brain and blood, Drug Delivery. 20 (2013) 247–251. https://doi.org/10.3109/10717544.2013.822945.

    Article  CAS  PubMed  Google Scholar 

  17. C. Zhao, J. Zhang, H. Hu, M. Qiao, D. Chen, X. Zhao, C. Yang, Design of lactoferrin modified lipid nano-carriers for efficient brain-targeted delivery of nimodipine, Mater. Sci. Eng. C. 92 (2018) 1031–1040. https://doi.org/10.1016/J.MSEC.2018.02.004.

    Article  CAS  Google Scholar 

  18. K. Jain, S. Sood, K. Gowthamarajan, Optimization of artemether-loaded NLC for intranasal delivery using central composite design, Drug Delivery. 22 (2014) 940–954. https://doi.org/10.3109/10717544.2014.885999.

    Article  CAS  PubMed  Google Scholar 

  19. R.G. Madane, H.S. Mahajan, Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study, Drug Delivery. 23 (2014) 1326–1334. https://doi.org/10.3109/10717544.2014.975382.

    Article  CAS  PubMed  Google Scholar 

  20. P. Dadhania, P.R. Vuddanda, A. Jain, S. Velaga, S. Singh, Intranasal delivery of asenapine loaded nanostructured lipid carriers: formulation, characterization, pharmacokinetic and behavioural assessment, RSC Adv. 6 (2016) 2032–2045. https://doi.org/10.1039/C5RA19793G.

  21. Y. Wu, X. Song, D. Kebebe, X. Li, Z. Xue, J. Li, S. Du, J. Pi, Z. Liu, Brain targeting of Baicalin and Salvianolic acid B combination by OX26 functionalized nanostructured lipid carriers, Int. J. Pharm. 571 (2019) 118754. https://doi.org/10.1016/J.IJPHARM.2019.118754.

    Article  CAS  PubMed  Google Scholar 

  22. S. Hernando, E. Herran, J. Figueiro-Silva, J.L. Pedraz, M. Igartua, E. Carro, R.M. Hernandez, Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease, Mol. Neurobiol. 55 (2018) 145–155. https://doi.org/10.1007/S12035-017-0728-7.

    Article  CAS  PubMed  Google Scholar 

  23. fda, cder, HIGHLIGHTS OF PRESCRIBING INFORMATION, (n.d.). www.fda.gov/medwatch. (accessed June 22, 2023).

  24. D. Spieler, C. Namendorf, T. Namendorf, M. von Cube, M. Uhr, Donepezil, a cholinesterase inhibitor used in Alzheimer’s disease therapy, is actively exported out of the brain by abcb1ab p-glycoproteins in mice, J. Psychiatr. Res. 124 (2020) 29–33. https://doi.org/10.1016/J.JPSYCHIRES.2020.01.012.

    Article  PubMed  Google Scholar 

  25. V.K. Nuthakki, A. Sharma, A. Kumar, S.B. Bharate, Identification of embelin, a 3-undecyl-1,4-benzoquinone from Embelia ribes as a multitargeted anti-Alzheimer agent, Drug Dev. Res. 80 (2019) 655–665. https://doi.org/10.1002/DDR.21544.

    Article  CAS  PubMed  Google Scholar 

  26. S. Bhuvanendran, N.A. Hanapi, N. Ahemad, I. Othman, S.R. Yusof, M.F. Shaikh, Embelin, a potent molecule for Alzheimer’s disease: A proof of concept from blood-brain barrier permeability, acetylcholinesterase inhibition and molecular docking studies, Front. Neurosci. 13 (2019) 444303. https://doi.org/10.3389/FNINS.2019.00495/BIBTEX.

    Article  Google Scholar 

  27. R. Arora, R. Deshmukh, Embelin Attenuates Intracerebroventricular Streptozotocin-Induced Behavioral, Biochemical, and Neurochemical Abnormalities in Rats, Mol. Neurobiol. 54 (2017) 6670–6680. https://doi.org/10.1007/S12035-016-0182-Y/FIGURES/7.

    Article  CAS  PubMed  Google Scholar 

  28. S. Manda, S. Sharma, A. Wani, P. Joshi, V. Kumar, S.K. Guru, S.S. Bharate, S. Bhushan, R.A. Vishwakarma, A. Kumar, S.B. Bharate, Discovery of a marine-derived bis-indole alkaloid fascaplysin, as a new class of potent P-glycoprotein inducer and establishment of its structure–activity relationship, Eur. J. Med. Chem. 107 (2016) 1–11. https://doi.org/10.1016/J.EJMECH.2015.10.049.

    Article  CAS  PubMed  Google Scholar 

  29. C.J. Morris, D. Della Corte, Using molecular docking and molecular dynamics to investigate protein-ligand interactions, Modern Physics Letters B. 35 (2021) 2130002. https://doi.org/10.1142/S0217984921300027.

    Article  CAS  Google Scholar 

  30. F.J. Solis, R.J.B. Wets, Minimization by Random Search Techniques, Mathematics of operations research. 6 (1981) 19–30. https://doi.org/10.1287/MOOR.6.1.19.

  31. B. Gaba, M. Fazil, S. Khan, A. Ali, S. Baboota, J. Ali, Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride, Bull. Fac. Pharmacy, Cairo Univ. 53 (2015) 147–159. https://doi.org/10.1016/J.BFOPCU.2015.10.001.

    Article  Google Scholar 

  32. S. Agarwal, SL. HariKumar, P. Negi, N. Upadhyay, R. Garg, Quetiapine Fumarate Loaded Nanostructured Lipid Carrier for Enhancing Oral Bioavailability: Design, Development and Pharmacokinetic Assessment, Curr. Drug Deliv. 18 (2021) 184–198. https://doi.org/10.2174/18755704MTA4cNTc6w.

    Article  CAS  PubMed  Google Scholar 

  33. V.K. Rapalli, V. Kaul, T. Waghule, S. Gorantla, S. Sharma, A. Roy, S.K. Dubey, G. Singhvi, Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition, Eur. J. Pharm. Sci. 152 (2020) 105438. https://doi.org/10.1016/J.EJPS.2020.105438.

    Article  CAS  PubMed  Google Scholar 

  34. A.C. Ortiz, O. Yañez, E. Salas-Huenuleo, J.O. Morales, Development of a nanostructured lipid carrier (NLC) by a low-energy method, comparison of release kinetics and molecular dynamics simulation, Pharmaceutics. 13 (2021) 531. https://doi.org/10.3390/PHARMACEUTICS13040531/S1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. I. Uddin, P. Venkata, R. Srikar, Y.P. Karunya, R. Chakraborty, R. Deepika, Synthesis and characterization of chitosan nanoparticles loaded with 6-gingerol isolated from Zingiber officinale Rosc, An Int. J. 9 (2020) 164–171. https://doi.org/10.21276/ap.2020.9.2.14.

    Article  CAS  Google Scholar 

  36. R. Iqbal, Z. Mehmood, A. Baig, N. Khalid, Formulation and characterization of food grade O/W nanoemulsions encapsulating quercetin and curcumin: Insights on enhancing solubility characteristics, Food Bioprod. Process. 123 (2020) 304–311. https://doi.org/10.1016/J.FBP.2020.07.013.

    Article  CAS  Google Scholar 

  37. D. Deepika, H.K. Dewangan, L. Maurya, S. Singh, Intranasal Drug Delivery of Frovatriptan Succinate–Loaded Polymeric Nanoparticles for Brain Targeting, J. Pharm. Sci. 108 (2019) 851–859. https://doi.org/10.1016/J.XPHS.2018.07.013.

    Article  CAS  PubMed  Google Scholar 

  38. O. Gartziandia, E. Herran, J.L. Pedraz, E. Carro, M. Igartua, R.M. Hernandez, Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration, Colloids Surfaces B Biointerfaces. 134 (2015) 304–313. https://doi.org/10.1016/J.COLSURFB.2015.06.054.

    Article  CAS  PubMed  Google Scholar 

  39. O. Gartziandia, E. Herrán, J.A. Ruiz-Ortega, C. Miguelez, M. Igartua, J. V. Lafuente, J.L. Pedraz, L. Ugedo, R.M. Hernández, Intranasal Administration of chitosan-Coated Nanostructured Lipid Carriers Loaded with GDNF Improves Behavioral and Histological Recovery in a Partial Lesion Model of Parkinson’s Disease, J. Biomed. Nanotechnol. 12 (2016) 2220–2230. https://doi.org/10.1166/JBN.2016.2313.

    Article  CAS  PubMed  Google Scholar 

  40. C.P. Agbo, T.C. Ugwuanyi, W.I. Ugwuoke, C. McConville, A.A. Attama, K.C. Ofokansi, Intranasal artesunate-loaded nanostructured lipid carriers: A convenient alternative to parenteral formulations for the treatment of severe and cerebral malaria, J. Control. Release. 334 (2021) 224–236. https://doi.org/10.1016/J.JCONREL.2021.04.020.

    Article  CAS  PubMed  Google Scholar 

  41. J. Weng, H.H.Y. Tong, S.F. Chow, In Vitro Release Study of the Polymeric Drug Nanoparticles: Development and Validation of a Novel Method, Pharmaceutics. 12 (2020) 732. https://doi.org/10.3390/PHARMACEUTICS12080732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. K.Y. Ho, C.C. Tsai, C.P. Chen, J.S. Huang, C.C. Lin, Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method, Phyther. Res. 15 (2001) 127–130. https://doi.org/10.1002/PTR.687.

    Article  Google Scholar 

  43. R.K. Yadav, K. Shah, H.K. Dewangan, Intranasal drug delivery of sumatriptan succinate-loaded polymeric solid lipid nanoparticles for brain targeting, Drug development and industrial pharmacy. 48 (2022) 21–28. https://doi.org/10.1080/03639045.2022.2090575.

  44. S. Ahmad, I. Khan, J. Pandit, N.A. Emad, S. Bano, K.I. Dar, M.M.A. Rizvi, M.D. Ansari, M. Aqil, Y. Sultana, Brain targeted delivery of carmustine using chitosan coated nanoparticles via nasal route for glioblastoma treatment, Int. J. Biol. Macromol. 221 (2022) 435–445. https://doi.org/10.1016/j.ijbiomac.2022.08.210.

    Article  CAS  PubMed  Google Scholar 

  45. Monika, S. Sharma, M. Shrivastva, S. Kumar, S.A. Rabbani, A. Garg, Novel In-Situ NanoEmulGel (NEG) of Azithromycin with Eugenol for the Treatment of Periodontitis: Formulation Development and Characterization, J. Clust. Sci. 33 (2022) 2589–2600. https://doi.org/10.1007/S10876-021-02172-8/METRICS.

    Article  CAS  Google Scholar 

  46. N.W. Kang, S.Y. Yoon, S. Kim, N.Y. Yu, J.H. Park, J.Y. Lee, H.J. Cho, D.D. Kim, Subcutaneously injectable hyaluronic acid hydrogel for sustained release of donepezil with reduced initial burst release: Effect of hybridization of microstructured lipid carriers and albumin, Pharmaceutics. 13 (2021) 864. https://doi.org/10.3390/PHARMACEUTICS13060864/S1.

    Article  PubMed  PubMed Central  Google Scholar 

  47. J. Choi, M.K. Choi, S. Chong, S.J. Chung, C.K. Shim, D.D. Kim, Effect of fatty acids on the transdermal delivery of donepezil: In vitro and in vivo evaluation, Int. J. Pharm. 422 (2012) 83–90. https://doi.org/10.1016/J.IJPHARM.2011.10.031.

    Article  CAS  PubMed  Google Scholar 

  48. S.E. Desale, S. Chinnathambi, Role of dietary fatty acids in microglial polarization in Alzheimer’s disease, J. Neuroinflammation. 17 (2020) 1–14. https://doi.org/10.1186/S12974-020-01742-3.

    Article  Google Scholar 

  49. R. Ali, S. Staufenbiel, Preparation and characterization of dexamethasone lipid nanoparticles by membrane emulsification technique, use of self-emulsifying lipids as a carrier and stabilizer, Pharmaceutical Development and Technology. 26 (2020) 262–268. https://doi.org/10.1080/10837450.2020.1863427.

    Article  CAS  PubMed  Google Scholar 

  50. S. Rathod, H. Desai, R. Patil, J. Sarolia, Non-ionic Surfactants as a P-Glycoprotein(P-gp) Efflux Inhibitor for Optimal Drug Delivery—A Concise Outlook, AAPS PharmSciTech. 23 (2022) 1–10. https://doi.org/10.1208/S12249-022-02211-1.

  51. S. Shaker, A. Gardouh, M. Ghorab, Factors affecting liposomes particle size prepared by ethanol injection method, Res. Pharm. Sci. 12 (2017) 346–352. https://doi.org/10.4103/1735-5362.213979.

    Article  PubMed  PubMed Central  Google Scholar 

  52. S. Cunha, B. Forbes, J.M.S. Lobo, A.C. Silva, Improving Drug Delivery for Alzheimer’s Disease Through Nose-to-Brain Delivery Using Nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ Hydrogels, Int. J. Nanomedicine. 16 (2021) 4373–4390. https://doi.org/10.2147/IJN.S305851.

    Article  PubMed  PubMed Central  Google Scholar 

  53. L.D. Olerile, Further Development of Near-Infrared Mediated Quantum Dots and Paclitaxel Co-loaded Nanostructured Lipid Carrier System for Cancer Theragnostic, Technol. Cancer Res. Treat. 19 (2020) [No pagination] https://doi.org/10.1177/1533033820914308.

  54. A. Kumar, V. Kaur, A. Singh, N. Mishra, Development and characterization of paclitaxel and embelin loaded solid lipid nanoparticles for breast cancer, J. Drug Deliv. Ther. 10 (2020) 60–68. https://doi.org/10.22270/JDDT.V10I1.3840.

    Article  Google Scholar 

  55. R. López-García, A. Ganem-Rondero, Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC): Occlusive Effect and Penetration Enhancement Ability, J. Cosmet. Dermatological Sci. Appl. 05 (2015) 62–72. https://doi.org/10.4236/JCDSA.2015.52008.

    Article  Google Scholar 

  56. A.B. Kovačević, R.H. Müller, C.M. Keck, Formulation development of lipid nanoparticles: Improved lipid screening and development of tacrolimus loaded nanostructured lipid carriers (NLC), Int. J. Pharm. 576 (2020) 118918. https://doi.org/10.1016/J.IJPHARM.2019.118918.

    Article  PubMed  Google Scholar 

  57. N. Manosalva, G. Tortella, M. Cristina Diez, H. Schalchli, A.B. Seabra, N. Durán, O. Rubilar, Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity, World J. Microbiol. Biotechnol. 35 (2019) 1–9. https://doi.org/10.1007/S11274-019-2664-3/METRICS.

    Article  CAS  Google Scholar 

  58. B. Ali, A. Khan, S. Nazir, A. Wahab, M. Ullah, M.N. Abbas, M. Mutahir, Discriminatory dissolution testing: A quality by design approach for formulation development of liquisolid compacts containing poor water soluble drug, Lat. Am. J. Pharm. 38 (2019) 2014–2021. https://www.researchgate.net/profile/Amjad-Khan-32/publication/339375261_Discriminatory_Dissolution_Testing_a_Quality_by_Design_Approach_for_Formulation_Development_of_Liquisolid_Compacts_Containing_Poor_Water_Soluble_Drug/links/5e4e116e92851c7f7f48bbb2/D (accessed June 21, 2023).

  59. P.L. Ritger, N.A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, J. Control. Release. 5 (1987) 23–36. https://doi.org/10.1016/0168-3659(87)90034-4.

    Article  CAS  Google Scholar 

  60. M.V.D.Z. Park, H.W. Verharen, E. Zwart, L.G. Hernandez, J. Van Benthem, A. Elsaesser, C. Barnes, G. McKerr, C.V. Howard, A. Salvati, I. Lynch, K.A. Dawson, W.H. De Jong, Genotoxicity evaluation of amorphous silica nanoparticles of different sizes using the micronucleus and the plasmid lacZ gene mutation assay, Nanotoxicology. 5 (2011) 168–181. https://doi.org/10.3109/17435390.2010.506016.

    Article  CAS  PubMed  Google Scholar 

  61. L. Jin, R.B. Caldwell, T. Li-Masters, R.W. Caldwell, Homocysteine induces endothelial dysfunction via inhibition of arginine transport., J. Physiol. Pharmacol. 58 (2007) 191–206. https://europepmc.org/article/med/17622691 (accessed June 21, 2023).

  62. Y. Li, L. Sun, M. Jin, Z. Du, X. Liu, C. Guo, Y. Li, P. Huang, Z. Sun, Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells, Toxicol. Vitr. 25 (2011) 1343–1352. https://doi.org/10.1016/J.TIV.2011.05.003.

    Article  CAS  Google Scholar 

  63. K. Shapero, F. Fenaroli, I. Lynch, D.C. Cottell, A. Salvati, K.A. Dawson, Time and space resolved uptake study of silica nanoparticles by human cells, Mol. Biosyst. 7 (2011) 371–378. https://doi.org/10.1039/C0MB00109K.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Partially supported by the Distinguished Fellowship program (DSFP), King Saud University, Riyadh, Saudi Arabia. The authors are thankful to Prof. (Dr.) Harun M. Patel, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education, Maharashtra, for his immense support in carrying out Molecular docking investigations. The authors are also grateful to DST-PURSE and DST-FIST for facilities at Jamia Hamdard and AICTE, New Delhi, for the GPAT Scholarship to the first author.

Funding

The financial support to the corresponding author from King Saud University under the Distinguished Fellowship Program is acknowledged. The authors acknowledge DST-PURSE and DST-FIST for facilities at Jamia Hamdard and AICTE, New Delhi, for the GPAT Scholarship to the first author.

Author information

Authors and Affiliations

Authors

Contributions

Mohd Humair Ali: Conceptualization, All investigation, Experimental work, Software, Formal analysis, Writing-original draft. Ozair Alam: Software. Asad Ali: Methodology, Experimental work. Mohd Uzair Ali: Writing- Review and editing. Suhel Parvez: Resources. Eman Aldosari: Funding acquisition. Sanjula Baboota: Data curation, review. Javed Ali: Project administration, Supervision, Funding acquisition.

Corresponding author

Correspondence to Javed Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval and consent to participate

The manuscript does not include any research investigations involving animals or human subjects conducted by any of the authors, exempting it from any ethical approval.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.H., Alam, O., Ali, A. et al. Donepezil and Embelin Loaded Nanostructured Lipid Carriers for Direct Brain Delivery as An Intervention for Alzheimer’s Disease: Formulation Design, Optimization and Evaluation. J Clust Sci 35, 1021–1044 (2024). https://doi.org/10.1007/s10876-023-02531-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02531-7

Keywords

Navigation