Skip to main content
Log in

Strongly Convergent Inertial Proximal Point Algorithm Without On-line Rule

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We present a strongly convergent Halpern-type proximal point algorithm with double inertial effects to find a zero of a maximal monotone operator in Hilbert spaces. The strong convergence results are obtained without on-line rule of the inertial parameters and the iterates. This makes our proof arguments different from what is obtainable in the literature where on-line rule is imposed on a strongly convergent proximal point algorithm with inertial extrapolation. Numerical examples with applications to image restoration and compressed sensing show that our proposed algorithm is useful and has practical advantages over existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing was not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

The MATLAB codes employed to run the numerical experiments are available on request.

References

  1. Aluffi-Pentini, F., Parisi, V., Zirilli, F.: Algorithm 617. DAFNE: a differential-equations algorithm for nonlinear equations. ACM Trans. Math. Softw. 10, 317–324 (1984)

    MathSciNet  Google Scholar 

  2. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38, 1102–1119 (2000)

    MathSciNet  Google Scholar 

  3. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14, 773–782 (2004)

    MathSciNet  Google Scholar 

  4. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    MathSciNet  Google Scholar 

  5. Antipin, A.S.: Minimization of convex functions on convex sets by means of differential equations, Differentsial’nye Uravneniya 30, 1475–1486 (1994), 1652; translation in Differential Equations 30 (1994), 1365–1375

  6. Bai, J., Zhang, H., Li, J.: A parameterized proximal point algorithm for separable convex optimization. Optim. Lett. 12, 1589–1608 (2018)

    MathSciNet  Google Scholar 

  7. Boikanyo, O.A., Morosanu, G.: Modified Rockafellar’s algorithms. Math. Sci. Res. J. 13, 101–122 (2009)

    MathSciNet  Google Scholar 

  8. Boikanyo, O.A., Morosanu, G.: A proximal point algorithm converging strongly for general errors. Optim. Lett. 4, 635–641 (2010)

    MathSciNet  Google Scholar 

  9. Boikanyo, O.A., Morosanu, G.: Four parameter proximal point algorithms. Nonlinear Anal. 74, 544–555 (2011)

    MathSciNet  Google Scholar 

  10. Boikanyo, O.A., Morosanu, G.: Inexact Halpern-type proximal point algorithm. J. Global Optim. 51, 11–26 (2011)

    MathSciNet  Google Scholar 

  11. Bruck, R.E., Jr.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18, 15–26 (1975)

    MathSciNet  Google Scholar 

  12. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics, vol. 2057. Springer, Berlin (2012)

    Google Scholar 

  13. Chen, C., Ma, S., Yang, J.: A general inertial proximal point algorithm for mixed variational inequality problem. SIAM J. Optim. 25, 2120–2142 (2015)

    MathSciNet  Google Scholar 

  14. Cholamjiak, W., Dutta, H.: Viscosity modification with parallel inertial two steps forward–backward splitting methods for inclusion problems applied to signal recovery. Chaos Solitons Fractals 157, 111858 (2022)

    MathSciNet  Google Scholar 

  15. Cholamjiak, W., Cholamjiak, P., Suantai, S.: An inertial forward–backward splitting method for solving inclusion problems in Hilbert spaces. J. Fixed Point Theory Appl. 20(42), 1–17 (2018)

    MathSciNet  Google Scholar 

  16. Combettes, P.L., Glaudin, L.E.: Quasi-nonexpansive iterations on the affine hull of orbits: from Mann’s mean value algorithm to inertial methods. SIAM J. Optim. 27, 2356–2380 (2017)

    MathSciNet  Google Scholar 

  17. Corman, E., Yuan, X.M.: A generalized proximal point algorithm and its convergence rate. SIAM J. Optim. 24, 1614–1638 (2014)

    MathSciNet  Google Scholar 

  18. Dey, S.: A hybrid inertial and contraction proximal point algorithm for monotone variational inclusions. Numer. Algor. 93, 1–25 (2023)

    MathSciNet  Google Scholar 

  19. Djafari Rouhani, B., Mohebbi, V.: Strong convergence of an inexact proximal point algorithm in a Banach space. J. Optim. Theory Appl. 186, 134–147 (2020)

    MathSciNet  Google Scholar 

  20. Dong, Q.L., Huang, J.Z., Li, X.H., Cho, Y.J., Rassias, Th.M.: MiKM: multi-step inertial Krasnosel’skii–Mann algorithm and its applications. J. Global Optim. 73, 801–824 (2019)

    MathSciNet  Google Scholar 

  21. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two or three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    MathSciNet  Google Scholar 

  22. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    MathSciNet  Google Scholar 

  23. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)

    Google Scholar 

  24. Glowinski, R., Marrocco, A.: Sur l’approximation, par élḿents finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Rev. Française Automat. Informat. Recherche Opérationnelle Sér, Rouge Anal. Numér. 9(R–2), 41–76 (1975)

    MathSciNet  Google Scholar 

  25. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    MathSciNet  Google Scholar 

  26. Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2, 649–664 (1992)

    MathSciNet  Google Scholar 

  27. He, Z., Zhang, D., Gu, F.: Viscosity approximation method for m-accretive mapping and variational inequality in Banach space. An. Stiint. Univ. Ovidius Constanta Ser. Mat. 17, 91–104 (2009)

    MathSciNet  Google Scholar 

  28. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    MathSciNet  Google Scholar 

  29. Iyiola, O.S., Shehu, Y.: Convergence results of two-step inertial proximal point algorithm. Appl. Numer. Math. 182, 57–75 (2022)

    MathSciNet  Google Scholar 

  30. Kamimura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226–240 (2000)

    MathSciNet  Google Scholar 

  31. Khatibzadeh, H., Ranjbar, S.: On the strong convergence of Halpern type proximal point algorithm. J. Optim. Theory Appl. 158, 385–396 (2013)

    MathSciNet  Google Scholar 

  32. Kim, D.: Accelerated proximal point method for maximally monotone operators. Math. Program. 190, 57–87 (2021)

    MathSciNet  Google Scholar 

  33. Kohlenbach, U.: On the proximal point algorithm and its Halpern-type variant for generalized monotone operators in Hilbert space. Optim. Lett. 16, 611–621 (2022)

    MathSciNet  Google Scholar 

  34. Leuştean, L., Pinto, P.: Quantitative results on a Halpern-type proximal point algorithm. Comput. Optim. Appl. 79, 101–125 (2021)

    MathSciNet  Google Scholar 

  35. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    MathSciNet  Google Scholar 

  36. Lorenz, D.A., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vision 51, 311–325 (2015)

    MathSciNet  Google Scholar 

  37. Maingé, P.E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 325, 469–479 (2007)

    MathSciNet  Google Scholar 

  38. Maingé, P.E., Merabet, N.: A new inertial-type hybrid projection-proximal algorithm for monotone inclusions. Appl. Math. Comput. 215, 3149–3162 (2010)

    MathSciNet  Google Scholar 

  39. Marino, G., Xu, H.K.: Convergence of generalized proximal point algorithm. Commun. Pure Appl. Anal. 3, 791–808 (2004)

    MathSciNet  Google Scholar 

  40. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. (French) Rev. Française Informat. Recherche Opérationnelle 4(Sér. R–3), 154–158 (1970)

  41. Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MathSciNet  Google Scholar 

  42. Moudafi, A., Elisabeth, E.: An approximate inertial proximal method using the enlargement of a maximal monotone operator. Int. J. Pure Appl. Math. 5, 283–299 (2003)

    MathSciNet  Google Scholar 

  43. Pinto, P.: A rate of metastability for the Halpern type proximal point algorithm. Numer. Funct. Anal. Optim. 42, 320–343 (2021)

    MathSciNet  Google Scholar 

  44. Polyak, B.T.: Introduction to Optimization. Optimization Software Inc., Publications Division, New York (1987)

  45. Poon, C., Liang, J.: Geometry of First-Order Methods and Adaptive Acceleration. arXiv:2003.03910 (2020)

  46. Poon, C., Liang, J.: Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration. arXiv:1906.10114 (2019)

  47. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)

    Google Scholar 

  48. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    MathSciNet  Google Scholar 

  49. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14, 877–898 (1976)

    MathSciNet  Google Scholar 

  50. Saejung, S., Yotkaew, P.: Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 75, 742–750 (2012)

    MathSciNet  Google Scholar 

  51. Tan, B., Cho, S.Y.: Strong convergence of inertial forward–backward methods for solving monotone inclusions. Appl. Anal. 101, 5386–5414 (2022)

    MathSciNet  Google Scholar 

  52. Tao, M., Yuan, X.: On the optimal linear convergence rate of a generalized proximal point algorithm. J. Sci. Comput. 74, 826–850 (2018)

    MathSciNet  Google Scholar 

  53. Thong, D.V., Vinh, N.T., Cho, Y.J.: New strong convergence theorem of the inertial projection and contraction method for variational inequality problems. Numer. Algor. 84, 285–305 (2020)

    MathSciNet  Google Scholar 

  54. Wang, F., Cui, H.: On the contraction-proximal point algorithms with multi-parameters. J. Global Optim. 54, 485–491 (2012)

    MathSciNet  Google Scholar 

  55. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    MathSciNet  Google Scholar 

  56. Xu, H.K.: A regularization method for the proximal point algorithm. J. Global Optim. 36, 115–125 (2006)

    MathSciNet  Google Scholar 

  57. Yao, Y., Noor, M.A.: On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math. 217, 46–55 (2008)

    MathSciNet  Google Scholar 

  58. Zhang, C., Dong, Q.L., Chen, J.: Multi-step inertial proximal contraction algorithms for monotone variational inclusion problems. Carpath. J. Math. 36, 159–177 (2020)

    MathSciNet  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekini Shehu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for Publication

All the authors gave consent for the publication of identifiable details to be published in the journal and article.

Ethical Approval and Consent to participate

All the authors gave the ethical approval and consent to participate in this article.

Additional information

Communicated by Shoham Sabach.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jolaoso, L.O., Shehu, Y. & Yao, JC. Strongly Convergent Inertial Proximal Point Algorithm Without On-line Rule. J Optim Theory Appl 200, 555–584 (2024). https://doi.org/10.1007/s10957-023-02355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02355-5

Keywords

Mathematics Subject Classification

Navigation