Skip to main content
Log in

First-principles analysis of how Cobalt doping affects the structural, electronic, and optical properties of α-MoO3

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO3) for utilizing it directly in gas sensing and optoelectronic devices. Doping with transition metal ions can be an optimistic solution to these problems. By doping four side of modification of a material is possible. At first, doping can curtail the width of the energy band of semiconductor materials, thereby largely boosting the photo-sensitivity of the material and intensifying the light consumption that is more suitable for anti-laser devices and light source substances. The second is that doping can widen the material's band gap, which can significantly reduce the purities of the substance, improve absorbance, and make it suitable for strong interference semiconductor films and aperture materials. Third, changing the material's charge carrier density and effective mass can significantly improve conductivity. This is mostly relevant for conductive devices and photosensitive materials. Finally, changing the material's valance electron location influences the magnetic moment created by the spin of elementary particles in the entire system, allowing the magnetic characteristics of the substance to be regulated, which is especially useful for diluted magnetic semiconductor (DMS) materials. The investigation report of the structural, electrical, and optical characteristics of Cobalt (Co)-doped orthorhombic-phase MoO3 utilizing plane-wave pseudo-potential technique based on first-principles computation is presented in this paper. The computation has been executed using density a functional theory (DFT)-based CASTEP computer program with the generalized gradient approximation (GGA) together with the Perdue-Burke-Ernzerhof (PBE) exchange–correlation function. Acquired structural parameters present good consistency with the former reported experimental data. The resultant electronic band structure reveals that pure MoO3 shows an indirect energy band gap of 1.873 eV/2.312 eV whereas Co doping causes band narrowing of about 0.94 eV/1.36 eV with PBE/HSE techniques. The total and partial density of states (PDOS) have been studied comparatively, for pure and Co-doped MoO3, respectively. The absorption coefficient, loss function, reflectivity, refractive index, extinction coefficient, dielectric function, along with optical conductivity have also been determined to analyze the optical properties of Co-doped MoO3. Co-doped MoO3 offers higher conductivity while decreasing resistivity, compared to the undoped case. The present study ensures that Co-doped α- MoO3 can be competently employed as a functional material in gas sensing and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M D Haque, M H Ali, M F Rahman and A Z M T Islam Opt. Mater. 131 112678 (2022)

  2. M H Ali, M A Al Mamun, M D Haque, M F Rahman, M K Hossain and A Z M Touhidul Islam ACS Omega 8 7017 (2023)

    Article  Google Scholar 

  3. N Rahman, M D Haque, M F Rahman, M M Islam, M A N Juthi, A R Roy, M A Akter and M F Islam Discov. Mater. 3 (2023)

  4. B Sultana, A T M S Islam, M D Haque, A Kuddus, M H Ali and M F Rahman Phys. Scripta 98 (2023)

  5. F Paquin, J Rivnay, A Salleo, N Stingelin and C Silva J. Mater. Chem. C 3 10715 (2015)

  6. K Galatsis, Y X Li, W Wlodarski, E Comini, G Sberveglieri, C Cantalini, S Santucci and M Passacantando Sens. Actuators B Chem. 83 276 (2002)

    Article  Google Scholar 

  7. N R Dighore, S P Jadhav, S T Gaikwad and A S Rajbhoj Int. J. Eng. Res. Appl. 4 135 (2014)

    Google Scholar 

  8. S Bhatia and A Khanna Struct. Opt. Prop. Molybd. Trioxide Thin Films p 080057 (2015)

  9. H-J Lunk et al. Inorg. Chem. 49 9400 (2010)

    Article  Google Scholar 

  10. R Pandeeswari and B G Jeyaprakash Biosens. Bioelectron. 53 182 (2014)

    Article  Google Scholar 

  11. K Kalantar-zadeh et al. Nanoscale 2 429 (2010)

    Article  ADS  Google Scholar 

  12. Z Su, L Wang, Y Li, G Zhang, H Zhao, H Yang, Y Ma, B Chu and W Li ACS Appl. Mater. Interfaces 5 12847 (2013)

    Article  Google Scholar 

  13. N Illyaskutty, S Sreedhar, G Sanal Kumar, H Kohler, M Schwotzer, C Natzeck and V P M Pillai Nanoscale 6 13882 (2014)

  14. K Galatsis, Y Li, W Wlodarski and K Kalantar-zadeh Sens. Actuators B Chem. 77 478 (2001)

    Article  Google Scholar 

  15. A K Prasad, P I Gouma, D J Kubinski, J H Visser, R E Soltis and P J Schmitz Thin Solid Films 436 46 (2003)

  16. S Balendhran et al. ACS Nano 7 9753 (2013)

    Article  Google Scholar 

  17. B Y Zhang et al. Adv. Funct. Mater. 28 1706006 (2018)

    Article  Google Scholar 

  18. J K Shon et al. Nat. Commun. 7 11049 (2016)

    Article  ADS  Google Scholar 

  19. R Sivakumar, M Jayachandran and C Sanjeeviraja Surf. Eng. 20 385 (2004)

    Article  Google Scholar 

  20. C Bechinger, S Ferrere, A Zaban, J Sprague and B A Gregg Nature 383 608 (1996)

    Article  ADS  Google Scholar 

  21. Z Yin, X Zhang, Y Cai, J Chen, J I Wong, Y-Y Tay, J Chai, J Wu, Z Zeng, B Zheng, H Y Yang and H Zhang Angew. Chemie Int. Ed. (2014)

  22. J N Yao, K Hashimoto and A Fujishima Nature 355 624 (1992)

    Article  ADS  Google Scholar 

  23. Y B Li, Y Bando, D Golberg and K Kurashima Appl. Phys. Lett. 81 5048 (2002)

    Article  ADS  Google Scholar 

  24. Y Chen, C Lu, L Xu, Y Ma, W Hou and J-J Zhu CrystEngComm 12 3740 (2010)

    Article  Google Scholar 

  25. J Zhou, S Z Deng, N S Xu, J Chen and J C She Appl. Phys. Lett. 83 2653 (2003)

    Article  ADS  Google Scholar 

  26. L Cheng, M Shao, X Wang and H Hu Chem. Eur. J. 15 2310 (2009)

    Article  Google Scholar 

  27. R S Datta, F Haque, M Mohiuddin, B J Carey, N Syed, A Zavabeti, B Zhang, H Khan, K J Berean, J Z Ou, N Mahmood, T Daeneke and K Kalantar-zadeh J. Mater. Chem. A 5 24223 (2017)

    Article  Google Scholar 

  28. M Arita, H Kaji, T Fujii and Y Takahashi Thin Solid Films 520 4762 (2012)

    Article  ADS  Google Scholar 

  29. T Brezesinski, J Wang, S H Tolbert and B Dunn Nat. Mater. 9 146 (2010)

    Article  ADS  Google Scholar 

  30. R Liang, H Cao and D Qian Chem. Commun. 47 10305 (2011)

    Article  Google Scholar 

  31. M T Greiner, L Chai, M G Helander, W-M Tang and Z-H Lu Adv. Funct. Mater. 23 215 (2013)

    Article  Google Scholar 

  32. S Bandaru, G Saranya, N J English, C Yam and M Chen Sci. Rep. 8 10144 (2018)

    Article  ADS  Google Scholar 

  33. Y Zhao, J Liu, Y Zhou, Z Zhang, Y Xu, H Naramoto and S Yamamoto J. Phys. Condens. Matter 15 L547 (2003)

    Article  ADS  Google Scholar 

  34. L Zheng, Y Xu, D Jin and Y Xie Chem. Mater. 21 5681 (2009)

    Article  Google Scholar 

  35. C V. Subba Reddy, E H Walker, S A Wicker, Q L Williams and R R Kalluru J. Solid State Electrochem. 13 1945 (2009)

  36. A Michailovski and G R Patzke Chem. Eur. J. 12 9122 (2006)

    Article  Google Scholar 

  37. M H Kim et al. Nano Lett. 9 4138 (2009)

    Article  ADS  Google Scholar 

  38. V Nirupama and S Uthanna J. Mater. Sci. Mater. Electron. 21 45 (2010)

    Article  Google Scholar 

  39. M F Al-Kuhaili, S M A Durrani, I A Bakhtiari and A M Al-Shukri Opt. Commun. 283 2857 (2010)

    Article  ADS  Google Scholar 

  40. I Navas, R Vinodkumar, K J Lethy, A P Detty, V Ganesan, V Sathe and V P Mahadevan Pillai J. Phys. D Appl. Phys. 42 175305 (2009)

    Article  ADS  Google Scholar 

  41. S S Mahajan, S H Mujawar, P S Shinde, A I Inamdar and P S Patil Appl. Surf. Sci. 254 5895 (2008)

    Article  ADS  Google Scholar 

  42. A Hojabri, F Hajakbari and A E Meibodi J. Theor. Appl. Phys. 9 67 (2015)

    Article  ADS  Google Scholar 

  43. P-R Huang, Y He, C Cao and Z-H Lu Sci. Rep. 4 7131 (2014)

    Article  Google Scholar 

  44. Q Meng, L Fan, L Zhu, N Xu and Q Zhang Int. J. Quantum Chem. 118 e25681 (2018)

    Article  Google Scholar 

  45. Q Qu, W-B Zhang, K Huang and H-M Chen Comput. Mater. Sci. 130 242 (2017)

    Article  Google Scholar 

  46. S J Clark, M D Segall, C J Pickard, P J Hasnip, M I J Probert, K Refson and M C Payne Zeitschrift Fur Kristallographie 220 567 (2005)

    ADS  Google Scholar 

  47. M K Hossain, A A Arnab, R C Das, K M Hossain, M H K Rubel, M F Rahman, H Bencherif, M E Emetere, M K A Mohammed and R Pandey RSC Adv. 12 34850 (2022)

    Article  ADS  Google Scholar 

  48. M K Hossain, M H K Rubel, G F I Toki, I Alam, M F Rahman and H Bencherif ACS Omega 7 43210 (2022)

    Article  Google Scholar 

  49. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  50. H Sitepu Powder Diffr. 24 315 (2009)

  51. M F Rahman, M Harun-Or-Rashid, M R Islam, A Ghosh, M K Hossain, S Bhattarai, R Pandey, J Madan, M A Ali and A B M Ismail Phys. Scripta 98 (2023)

  52. A Ghosh, M F Rahman, M R Islam, M S Islam, M Hossain, S Bhattarai, R panday, J Madan, M A Rahman and A B Ismail Opt. Continuum 2 (2023)

  53. M F Rahman, M A I Islam, M R Islam, M H Ali, P Barman, M A Rahman, M Harun‐Or‐Rashid, M Hasan and M K Hossain Nano Select 4 (2023)

  54. A B Shanto,M F Rahman, R Islam, A Ghosh, A Azzouz-rached, H Albalawi and Q Mahmood F1000Research 12 (2023)

  55. F Rahman, A Rahman, R Islam, A Ghosh, A B Shanto, M Chowdhury, A I Islam, H Rahman, M K Hossain and M A Islam AIP Adv. 085329 1 (2023)

    Google Scholar 

  56. A Ghosh, F Rahman, R Islam and S Islam Heliyon 9 e19271 (2023)

    Article  Google Scholar 

  57. M F Rahman, H Rahman, R Islam and M K Hossain J. Mater. Sci. 58 (2023)

  58. M F Rahman, M M Islam, M R Islam, A Ghosh, M A Rahman, M H Rahman, M A I Islam, M A Islam, H Albalawi and Q Mahmood J. Solid State Chem. 328 124341 (2023)

    Article  Google Scholar 

  59. D G Hinks, B Dabrowski, J D Jorgensen, A W Mitchell, D R Richards, S Pei and D Shi Nature 333 836 (1988)

    Article  ADS  Google Scholar 

  60. T Nishio, J Ahmad and H Uwe Phys. Rev. Lett. 95 176403 (2005)

    Article  ADS  Google Scholar 

  61. C M I Okoye Eur. Phys. J. B 39 5 (2004)

  62. A Rahman, A Rahman and Z Rahaman J. Adv. Phys. 5 354 (2016)

    Article  Google Scholar 

  63. A B Kuzmenko Rev. Sci. Instrum. 76 083108 (2005)

    Article  ADS  Google Scholar 

  64. Z Xu Solid State Commun. 76 1143 (1990)

    Article  ADS  Google Scholar 

  65. L Lajaunie, F Boucher, R Dessapt and P Moreau Phys. Rev. B 88 115141 (2013)

    Article  ADS  Google Scholar 

  66. M K Hossain et al. Sci. Rep. 1 (2023)

  67. R Islam, M F Rahman, S Bhattarai, H Bencherif, M K A Mohammed, R Pandey and J Madan Energy & Fuels 37 (2023)

Download references

Acknowledgements

The authors are satisfied to Department of Electrical and Electronic Engineering Begum Rokeya University, Rangpur 5400, Bangladesh due to using Advanced Energy Materials and Solar Cell Research Laboratory.

Funding

By getting no specific grants, this research was done from funding agencies in the non-profit sectors including public and marketable.

Author information

Authors and Affiliations

Authors

Contributions

MFR, MHA: Conceptualization, Methodology, Software, Validation, Formal analysis, Visualization, Investigation, Data Curation, Supervision, Writing-Original Draft, Review & Editing. ZRM, AG: Methodology, Software, Validation, Formal analysis, Visualization Investigation, Data Curation, Writing-Original Draft, Review & Editing. PB, MRI, MKH: Methodology, Software, Validation, Formal analysis, Writing-Original Draft, Review & Editing.

Corresponding authors

Correspondence to Md. Ferdous Rahman or Md. Hasan Ali.

Ethics declarations

Conflict of interest

The all authors have no conflicts of interest.

Ethical approval

The all authors declare that the manuscript does not have studies on human subjects, human data or tissue, or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.F., Melody, Z.R., Ali, M.H. et al. First-principles analysis of how Cobalt doping affects the structural, electronic, and optical properties of α-MoO3. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03043-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03043-w

Keywords

Navigation