Skip to main content
Log in

Synthesis and photoluminescence properties of Sm3+ doped La2O3 nanoparticles

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Samarium-doped La2O3 nanocrystalline powder annealed at different temperatures has been synthesized by a very cost-effective chemical precipitation method. X-ray diffraction, transmission electron microscope, energy-dispersive X-ray (EDAX) attached to scanning electron microscope and photoluminescence spectroscopy (PL) were used to analyse the prepared nanocrystals. Samples were heated at 600 °C, 700 °C and 800 °C to increase crystallinity and observe the particle size effect on the luminescence property. The PL intensity of Sm3+ increases with heating from 600 to 800 °C. This is attributed to the increase of Sm3+ occupancy in the La3+ lattice sites and also the extent of the reduction in the non-radiative transition with the improvement of crystallinity. Emission intensity is found to be maximum at 1 at.% Sm3+ doped sample for all heating temperatures. The present material might be a promising phosphor for white light LED application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z L Wong, G R Li, Y N Ou, Z P Feng, D L Qu and Y X Tong J. Phys. Chem. 115 351 (2011).

    Article  Google Scholar 

  2. G Liu and X Chen Handb. Phys. Chem. Rare Earths North-Holland 37 99 (2007).

    Article  Google Scholar 

  3. M Méndeza et al. Phys. Pro. 8 114 (2010).

    Article  Google Scholar 

  4. M Méndez et al. Opt. Mater. 32 1686 (2010).

    Article  ADS  Google Scholar 

  5. N S Singh, R S Ningthoujam, M N Luwang, S D Singh and R K Vatsa Chem. Phys. Lett. 480 237 (2009).

    Article  ADS  Google Scholar 

  6. V Dordevic, M G Nicolic, Z Antic, M Mitric and M D Dramicanin Ac. Phys. Pol. A 120 303 (2011).

    Article  Google Scholar 

  7. V Dordevi’c, Z Anti’c, M G Nikoli’c and M D Drami’canin J. Res. Phys. 37 1 47 (2013).

    Article  Google Scholar 

  8. T Tanabe, Y Nagai, K Dohmae, N Takagi, N Takahashi, S Matsumoto and H Shinjoh Appl. Catal. B 105 41 (2011).

    Article  Google Scholar 

  9. S Sato, R Takahashi, M Kobune, H Inoue, Y Izawa, H Ohno and K Takahashi Appl. Catal. A 356 64 (2009).

    Article  Google Scholar 

  10. K Sutthiumporn and S Kawi Int. J. Hydrog. Energy 36 14435 (2011).

    Article  Google Scholar 

  11. K Tanaka, Y Sekine, K Oshima, Y Tanaka, M Matsukata and E Kikuchi Chem. Lett. 41 351 (2012).

    Article  Google Scholar 

  12. B Sen, H Wong, J Molina, H Iwai, J A Ng, K Kakushima and C K Sarkar Solid-State Electron. 51 475 (2007).

    Article  ADS  Google Scholar 

  13. S S Kale, K R Jadhav, P S Patil, T P Gujar and C D Lokhande Mater. Lett. 59 3007 (2005).

    Article  Google Scholar 

  14. L Zhang, Z Sun, F Yu and H Chen Bioinorg. Chem. Appl. 2011 853048 (2011).

    Article  Google Scholar 

  15. M Leskela, K Kukli and M Ritala J. Alloys Compd. 418 27 (2006).

    Article  Google Scholar 

  16. J Changa, S Xionga, H Penga, L Sunb, S Luc, F Youa and S Huanga J. Lum. 122 844 (2007).

    Article  ADS  Google Scholar 

  17. J K Park, S M Park, C H Kim, H D Park and S Y Choi J. Mater. Sci. Lett. 20 2231 (2001).

    Article  Google Scholar 

  18. R Gunawidjaja, H D Riega and H Eilers P. Tech. 271 255 (2015).

    Article  Google Scholar 

  19. R S Meltzer, S P Feofilov, R Tissue and H B Yuan Phys. Rev. B 60 14012 (1999).

    Article  ADS  Google Scholar 

  20. C Xueyuan, L Wenqin, L Yongsheng and L Guokui J. Rare Earths 25 515 (2007).

    Article  Google Scholar 

  21. A V Murugan, A K Viswanath, B A Kakade, V Ravi and V Saaminathan J. Phys. D Appl. Phys. 39 3974 (2006).

    Article  Google Scholar 

  22. L P Singh, M N Luwang and S K Srivastava New J. Chem 38 115 (2014).

    Article  Google Scholar 

  23. Y Chen, H K Y Jong, W Chung, B K Moon, H Choi and H Jeong J. Korean Phys. Soc. 6 1760 (2010).

    Google Scholar 

  24. K R Devi and S D Singh Ind. J. Phys. 92 725 (2018).

    Article  Google Scholar 

  25. S D Meetei and S D Singh J. Lum. 147 328 (2014).

    Article  ADS  Google Scholar 

  26. N Shanta Singh et al. J. Appl. Phys. 104 104307 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank and acknowledge the National Institute of Technology (NIT), Manipur, India, for providing PL facility and SAIF, NEHU, Shillong, Meghalaya, India, for providing TEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konsam Reenabati Devi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, K.R., Singh, S.D. Synthesis and photoluminescence properties of Sm3+ doped La2O3 nanoparticles. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03031-0

Keywords

Navigation