Skip to main content
Log in

Structural electronic and optical properties of chalcopyrite compounds AuMTe2 (M = Ga, In) from first-principles calculation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This research explored the physical properties of AuMTe2 (M = Ga, In) chalcopyrite compound. We employ the full-potential linearized augmented plane wave (FP-LAPW) method in combination with the Tran-Blaha modified Becke–Johnson potential (TB-mBJ) as well as the generalized gradient approximation (GGA-PBE(96)), local density approximation (LDA) and Wu–Cohen generalized gradient approximation (WC-GGA) for the exchange–correlation potentials to analyze the structural, electronic and optical properties. The results are presented for lattice constant, bulk modulus, its pressure derivative, density of state (DOS) and optical properties. The structural and electronic outcomes obtained in this study align well with existing theoretical data. Our investigation revealed that the studied compounds exhibit a direct band gap, with average energy gaps of order of 0.281 eV for AuGaTe2 and 0.092 eV for AuInTe2 compounds, respectively. Optical properties, encompassing reflectivity R(w), absorption coefficient α(ω), refractive index n(ω), optical conductivity σ(ω), extinction coefficient k(ω) and energy loss function L(ω) are determined from real and imaginary parts of the computed dielectric function within the frameworks of the modified Becke–Johnson plus PBE-GGA(96), LDA and WC-GGA exchange–correlation potentials. The computed optical properties reveal minimal energy loss and reflectivity, alongside satisfactory absorption capability and optical conductivity within the infrared and visible spectral regions. These findings indicate potential applications in fields such as infrared absorption technologies and optoelectronic industries. This marks the initial quantitative theoretical forecast of the optical properties for these chalcopyrite compounds, necessitating experimental confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L Shi, J Hu, Y Qin, Y Duan, L Wu, X Yang and G Tang J. Alloys Compd. 611 210 (2014)

    Article  Google Scholar 

  2. L L Kazmerski and Y J Juang J. Vacuum Sci. Technol. 14 769 (1977)

    Article  ADS  Google Scholar 

  3. A Sajad and A Mudasir Pak. J. Sci. Ind. Res. Ser. A: Phys. Sci. 56 1252 (2013)

    Google Scholar 

  4. S A Aliev and S S Raginov Neorg. Mater. 28 329 (1992)

    Google Scholar 

  5. M S Yaseen, J Sun, H Fang, G Murtaza and D S Sholl Solid State Sci. 111 106508 (2021)

    Article  Google Scholar 

  6. F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)

    Article  ADS  Google Scholar 

  7. A D Becke and E R Johnson J. Chem. Phys. 124 221101 (2006)

    Article  ADS  Google Scholar 

  8. W Kohn and L J Sham Phys. Rev. A 140 1133 (1965)

    Article  ADS  Google Scholar 

  9. J P Perdew and Y Wang Phys. Rev. B 45 13244 (1992)

    Article  ADS  Google Scholar 

  10. J P Perdew Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  11. J A Camargo-Martinez and R Baquero Phys. Rev. B 86 195106 (2012)

    Article  ADS  Google Scholar 

  12. D Zou, S Xie, Y Liu, J Lin and J Li J. Alloys Compd. 570 150 (2013)

    Article  Google Scholar 

  13. H Peng, C L Wang and J C Li Physica B 441 68 (2014)

    Article  ADS  Google Scholar 

  14. S R Zhang, L H Xie, X W Chen, Z G Shi and K H Song Chalcogenide Lett. 11 373 (2014)

    Google Scholar 

  15. J Yang, Q Fan and X Cheng Open Sci. 4 170750 (2017)

    Google Scholar 

  16. S Sharma Res. Bull. 53 218 (2014)

    Article  Google Scholar 

  17. Y Zhong, P Wang and H Mei Sci. Semicond. Process. 84 42 (2018)

    Article  Google Scholar 

  18. A Ghosh J. Mater. Sci. 50 1710 (2015)

    Article  ADS  Google Scholar 

  19. T Maeda, T Takeichi and T Wada Phys. Stat. Sol. (a) 203 2634 (2006)

    Article  ADS  Google Scholar 

  20. P Singh, S Sharma, S Kumari, V K Saraswat, D Sharma and A S Verma Semiconductor 51 679 (2017)

    Article  ADS  Google Scholar 

  21. P Pyyko Angewandte Chemie-international edition 43 4412 (2004)

    Article  Google Scholar 

  22. G J Hutchings Soci. Rev. 37 1759 (2008)

    Google Scholar 

  23. Q Wu, W W Xu and L Ma Mater. & interf. 10 16739 (2018)

    Article  Google Scholar 

  24. D Koller Phys. Rev. B 83 195134 (2011)

    Article  ADS  Google Scholar 

  25. O K Anderson Phys. Rev. B 12 3060 (1975)

    Article  ADS  Google Scholar 

  26. K Schwarz Comput. Phys. Commun. 147 71 (2002)

    Article  ADS  Google Scholar 

  27. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2k: An augmented plana wave plus local orbitals program for calculating crystal properties (Vienna: Vienna University of Technology) (2014)

    Google Scholar 

  28. Z Wu and R E Cohen Phys. Rev. B 73 235116 (2006)

    Article  ADS  Google Scholar 

  29. F Tran, R Laskowski, P Blaha and K Schwarz Phys. Rev. B 75 11 (2007)

    Article  Google Scholar 

  30. S Cottenier Density Functional Theory and the family of (L)APW-methods: a step-by-step introduction (Belgium: Ghent University) (2nd edition), ISBN 978-90-807215-1-7 (2002–2013)

  31. K A Baseden and J W Tye J. Chem. Educ. 91 2116 (2014)

  32. F Kootstra J. Chem. Phys. 112 6517 (2000)

    Article  ADS  Google Scholar 

  33. C Li, R Requist and E K U Gross J. Chem. Phys. 148 084110(1–10) (2018)

    ADS  Google Scholar 

  34. S A Khandy, I Islam, Z S Ganai, D C Gupta and K A Parrey J. Electron. Materi. 47 436 (2018)

    Article  ADS  Google Scholar 

  35. Y Xu, S Wei, L Xu and Z Han Indian J. Phys. 97 1117 (2023)

    Article  ADS  Google Scholar 

  36. S Sâad Essaoud and A S Jbara Indian J. Phys. 97 105 (2023)

    Article  ADS  Google Scholar 

  37. M Musa, H E Saad and A Elhag Indian J. Phys. 96 2731 (2022)

    Article  ADS  Google Scholar 

  38. H Ahmoum, M S Suait, G Li, S Chopra, M Boughrara, Q Wang, M Kerouad and D P Rai Indian J. Phys. 95 281 (2021)

    Article  ADS  Google Scholar 

  39. D Koller, F Tran and P Blaha Phys. Rev. B 85 155109(1–8) (2012)

    ADS  Google Scholar 

  40. N Joshi and D Upadhyay Jha Optic. Mater. 132 112798 (2022)

    Article  Google Scholar 

  41. N Joshi and D Upadhyay J. Appl. Phys. 126 235705 (2019)

    Article  ADS  Google Scholar 

  42. G K Balci and S Ayhan J. Non-Oxide Glasses 11 9 (2019)

    Google Scholar 

  43. M Naseri, J Jalilian and A H Reshak Opt. Int. J. Light Electron Opt. 139 9 (2017)

    Article  Google Scholar 

  44. M Hilal and B Rashid Chem. Phys. 184 41 (2016)

    Google Scholar 

  45. M Bass Handbook of Optics (New York: McGrew-Hill, Inc.) (ed. Optical Society of America) P Lamp Vol. 1, Ch 9, Sec 7, p 348 (1995)

  46. R Dalven Phys. Rev. B 8 6033 (1973)

    Article  ADS  Google Scholar 

  47. Y Shena and Z Zhou J. Appl. Phys. 103 074113 (2008)

    Article  ADS  Google Scholar 

  48. C Ambrosch-Drax and J O Sofo Comput. Phys. Commun. 175 1 (2006)

    Article  ADS  Google Scholar 

  49. M Majidiyan, R A Taghavimendi L K Khorashad, G H Khorrami and H Arabshahi Int. J. Emerg. Tech. Adv. Eng. 2 546 (2012)

  50. F Wooten Optical properties of solids (NewYork and London: Copyright Academic Press. Inc.) Ch 2, Sec 6, p 28 (1972)

  51. S Saha, T P Sinha and A Mookerjee Phys. Rev. B 62 8828 (2000)

    Article  ADS  Google Scholar 

  52. I Khan, F Subhan, I Ahmad and Z Ali J. Phys. Chem. Solids 83 75 (2015)

    Article  ADS  Google Scholar 

  53. E Albanesi, E P Y Blanca and A Petukhov Comput. Mater. Sci. 32 85 (2005)

    Article  Google Scholar 

  54. M Alouani, L Brey and N E Christensen Phys. Rev. B 37 1167 (1988)

    Article  ADS  Google Scholar 

  55. S Shokhovets, M Himmerlich, L Kirste, J H Leach and S Krischok Appl. Phys. Lett. 107 092104 (2004)

    Article  ADS  Google Scholar 

  56. P Sharma and S C Katyal J. Phy. D: Appl. Phys. 40 2115 (2007)

    Article  ADS  Google Scholar 

  57. A Ghosh, R Thangavel and M Rajagopalan J. Mater. Sci. 50 1710 (2015)

    Article  ADS  Google Scholar 

  58. J Sun, H Wang, J He and Y Tian Phys. Rev. B 71 125132 (2005)

    Article  ADS  Google Scholar 

  59. S Ozaki and S Adachi J. Appl. Phys. 75 7470 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author Bin-Omran acknowledges researchers supporting Project number (RSP2023R82), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Boucerredj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beggas, K., Boucerredj, N., Ghemid, S. et al. Structural electronic and optical properties of chalcopyrite compounds AuMTe2 (M = Ga, In) from first-principles calculation. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03049-4

Keywords

Navigation