Skip to main content
Log in

Effect of magnetic field due to permanent magnets on microwave discharge plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, optical emission spectroscopy (OES) is used to investigate the effect of the magnetic field caused by permanent magnets on the 2.45 GHz argon microwave plasma discharge at low pressure. For this purpose, the characteristics of the plasma such as electron temperature and electron density have been obtained and compared in two cases, with and without the presence of magnetic field. The results show that in the argon plasma in the presence of 875 G magnetic field and at 5.4 × 10–3 mbar pressure, the electron density and temperature reached to about 1.75 × 1011 cm−3 and 1.4 eV, respectively. However, in the absence of the magnetic field, the obtained values for electron density and temperature are about 0.75 × 1011 cm−3 and 0.62 eV, respectively. In fact, using the magnetic field produced by two permanent magnets, a significant increase in the density of electrons can be observed. We have compared our experimental results with numerical simulations. In this way, the microwave plasma is modeled with finite element method using COMSOL multi-physics software, which shows good agreement between simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M A Lieberman and A J Lichtenberg Principles of Plasma Discharges and Materials Processing (Wiley) (2005)

    Book  Google Scholar 

  2. N N Misra, O Schlüter and P J Cullen Plasma in Food and Agriculture (Academic Press) (2016)

    Book  Google Scholar 

  3. W Rao, Y Li, H Dhaliwal, M Feng, Q Xiang, M S Roopesh, D Pan and L Du Food Eng. Rev. 15 86 (2023)

    Article  Google Scholar 

  4. N Ahmed, K S Siow, M M R Wee and A Patra Sci. Rep. 13 1675 (2023)

    Article  ADS  Google Scholar 

  5. S Shirzadeh Ajirloo, S Shaikhzadeh Najar, M Varsei and A Rashidi J. Text. Inst. 114 601 (2023)

    Article  Google Scholar 

  6. A Deshmukh, G Talwar and M Singla Environ. Conserv. J. 23 87 (2022)

    Article  Google Scholar 

  7. L Bardos and H Barankova Vacuum 83 522 (2008)

    Article  ADS  Google Scholar 

  8. Z Donkó, J Schulze, U Czarnetzki, A Derzsi, P Hartmann, I Korolov and E Schüngel Plasma Phys. Control. Fusion 54 124003 (2012)

    Article  ADS  Google Scholar 

  9. S Y Moon, W Choe and B K Kang Appl. Phys. Lett. 84 188 (2004)

    Article  ADS  Google Scholar 

  10. A Taylor, P Ashcheulov, M Čada, L Fekete, P Hubík, L Klimša, J Olejníček et al Phys. Status Solidi (A) 212 2418 (2015)

    Article  ADS  Google Scholar 

  11. Y Wei, X Zuo, L Chen, Y Meng, S Fang, J Shen and X Shu Plasma Sci. Technol. 16 356 (2014)

    Article  ADS  Google Scholar 

  12. T D Mantei and S Dhole J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 9 26 (1991)

    ADS  Google Scholar 

  13. G Neumann and K H Kretschmer J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 9 334 (1991)

    ADS  Google Scholar 

  14. J Yang, Y Xu, Z Meng and T Yang Phys. Plasmas 15 023503 (2008)

    Article  ADS  Google Scholar 

  15. L Chen, Y Zhao, K Wu, Q Wang, Y Meng and Z Ren Phys. Plasmas 23 123509 (2016)

    Article  ADS  Google Scholar 

  16. T Morishita, R Tsukizaki, S Morita, D Koda, K Nishiyama and H Kuninaka Acta Astronaut. 165 25 (2019)

    Article  ADS  Google Scholar 

  17. L Wang, H Bao, D Ding and R Chen Phys. Plasmas 27 123510 (2020)

    Article  ADS  Google Scholar 

  18. S Bhowmick, J Mukherjee, V Naik and P Karmakar Vacuum 215 112348 (2023)

    Article  ADS  Google Scholar 

  19. A Diop, D Ngoue, A Mahammou, B Diallo, B Plujat, A Bousquet and L Thomas Surf. Coat. Technol. 459 129408 (2023)

    Article  Google Scholar 

  20. S F Meng and D R Yu Phys. Plasmas 30 9 (2023)

    Article  Google Scholar 

  21. S Fu and Z Ding IEEE Trans. Plasma Sci. 50 1803 (2022)

    Article  ADS  Google Scholar 

  22. H W Yoon, S M Shin, S Y Kwon, H M Cho, S G Kim and M P Hong Materials 14 2025 (2021)

    Article  ADS  Google Scholar 

  23. R Khanna, K Bevlin, D Geerpuram, J Yang, F Ren and S Pearton Gallium Oxide Elsevier 263 (2019)

  24. C Hain, P Schweizer, P Sturm, A Borzì, J E Thomet, J Michler and T Nelis Surf. Coat. Technol. 454 129 (2023)

    Article  Google Scholar 

  25. C Yao, D Zhang, L Wu, N Xu, J Sun and J Wu Ceram. Int. 48 587 (2022)

    Article  Google Scholar 

  26. K Choi, T J Eom and C Lee Thin Solid Films 435 227 (2003)

    Article  ADS  Google Scholar 

  27. S Neha, P Rajput and N Remya Environ. Res. 210 112922 (2022)

    Article  Google Scholar 

  28. N Bibinov, H Halfmann and P Awakowicz Plasma Sources Sci. Technol. 17 035004 (2008)

    Article  ADS  Google Scholar 

  29. R McWhirter Plasma Diagnostic Techniques (New York: Academic Press) (1965)

    Google Scholar 

  30. A Qayyum, S Zeb, M A Naveed, S A Ghauri and M Zakaullah Plasma Devices Oper. 15 87 (2007)

    Article  ADS  Google Scholar 

  31. T Fujimoto J. Phys. Soc. Jpn. 47 273 (1979)

    Article  ADS  Google Scholar 

  32. N Tian-Ye, C Jin-Xiang, L Lei, L Jin-Ying, W Yan, W Liang and L You Chin. Phys. 16 2757 (2007)

    Article  Google Scholar 

  33. J Vlcek J. Phys. D Appl. Phys. 22 623 (1989)

    Article  ADS  Google Scholar 

  34. J B Boffard, C C Lin and C A DeJoseph J. Phys. D Appl. Phys. 37 R143 (2004)

    Article  ADS  Google Scholar 

  35. X M Zhu and Y K Pu J. Phys. D Appl. Phys. 43 403001 (2010)

    Article  Google Scholar 

  36. X M Zhu, W C Chen, S Zhang, Z G Guo, D W Hu and Y K Pu J. Phys. D Appl. Phys. 40 7019 (2007)

    Article  ADS  Google Scholar 

  37. M Nikolić, J Newton, C I Sukenik, L Vušković and S Popović J. Appl. Phys. 117 023304 (2015)

    Article  ADS  Google Scholar 

  38. X M Zhu, Z W Cheng, E Carbone, Y K Pu and U Czarnetzki Plasma Sources Sci. Technol 25 043003 (2016)

    Article  ADS  Google Scholar 

  39. K Katsonis C Berenguer A Kaminska and M Dudeck Int. J. Aerosp. Eng. 2011 (2011)

  40. J B Boffard, B Chiaro, T Weber and C C Lin At. Data Nucl Data Tables 93 831 (2007)

    Article  ADS  Google Scholar 

  41. S Wu, H Xu, X Lu and Y Pan Plasma Process. Polym. 10 136 (2013)

    Article  Google Scholar 

  42. D L Adams and W Whaling JOSA 71 1036 (1981)

    Article  ADS  Google Scholar 

  43. K Danzmann and M Kock JOSA 72 1556 (1982)

    Article  ADS  Google Scholar 

  44. C H Corliss and J B Shumaker Jr J. Res. Nat. Bur. Stand. Sect. A Phys. Chem. 71 575 (1967)

    Article  Google Scholar 

  45. J E Chilton, J B Boffard, R S Schappe and C C Lin Phys. Rev. A 57 267 (1998)

    Article  ADS  Google Scholar 

  46. J B Boffard, A P Garrett, M F Gehrke, L W Anderson and C C Lin Phys. Rev. A 59 2749 (1999)

    Article  ADS  Google Scholar 

  47. T Weber, J B Boffard and C C Lin Phys. Rev. A 68 032719 (2003)

    Article  ADS  Google Scholar 

  48. D T Tran, T A Grotjohn, D K Reinhard and J Asmussen Diam. Relat. Mater. 17 717 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors have equal contribution to the study conception, design, material preparation, data collection, analysis and writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elnaz Khalilzadeh.

Ethics declarations

Conflict of interest

No funds, grants, or other support was received.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, Z., Khalilzadeh, E., Razavinia, N. et al. Effect of magnetic field due to permanent magnets on microwave discharge plasma. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03046-7

Keywords

Navigation