Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 25, 2023

Finding the ‘Goldilocks Zone’: cationic size and tilting of carbodiimide and cyanamide anions

  • Juan Medina-Jurado , Alex J. Corkett and Richard Dronskowski EMAIL logo

Abstract

Solid-state carbodiimides and cyanamides are a group of compounds that generally shows motifs of layered structures, with an alternating sequence of metal cations and NCN2− anions. A study of the relationship between the ionic sizes in the cation layer and the crystal structures found is presented using the geometric characteristics of the NCN2− coordination environment. The results of this analysis reveal a ‘Goldilocks zone’ of cationic sizes, from Al3+ to Tl+, that are capable of forming stable “layered” metal carbodiimide structures. Furthermore, by employing a vectorial approach a correlation between the size difference of the cations and the degree of tilting of the NCN2− framework has been found, capable of predicting the likelihood of new phases crystallizing in such structures.


Corresponding author: Richard Dronskowski, Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany, E-mail:

Appendix

1 Mathematical background of size estimation.

From Figure A, given a cation A with size rA, the relation of determining the size of B is given as follows:

Figure A: 
Arrangement of the ions A and B in the trigonal prism coordinating to the top N atom, as well as the geometric relation between the bond lengths, dAN and dBN, and the distance between the ions, l.
Figure A:

Arrangement of the ions A and B in the trigonal prism coordinating to the top N atom, as well as the geometric relation between the bond lengths, dAN and dBN, and the distance between the ions, l.

If dAN = rA + r N and dBN = rB + r N , then d AN ´ = d AN 2 d 2 and d BN ´ = d BN 2 d 2

Therefore:

(1) l 3 2 = d AN + d BN ´ 2 ( l 2 ) 2

The size of the B cation therefore depends on rA, l, and d. For a given A cation, the minimum and maximum B cationic size would be given by:

(2) f ( r A , l , d ) min < r B = f ( r A , l , d ) < f ( r A , l , d ) max

To find suitable minimum and maximum values for l and d, let us assume A and B to be the same cation. Then, from eq. (1) we obtain

(3) l 3 2 = d AN ´ + d AN ´ 2 ( l 2 ) 2

which manifests that the l and d values are strongly related to each other, and a priori it is impossible to find a unique solution for eq. (3) given some cation A. As already mentioned, however, the overall effect of the balance of l (related to the size of the base formed for by cations) and d (related to the distance from N to the base formed by the cations) is the tilting of the NCN2− unit, so instead of restricting (l, d) it is better to delimit θ. Then, eq. (2) can be rewritten as:

(4) f ( r A , l , d ) θ min < r B = f ( r A , l , d ) < f ( r A , l , d ) θ max

Thus, we may solve eq. (1) for each cation A, using (l, d)min from the compound with the lowest tilting (NiNCN, θ = 0°, l = 3.153 Å, d = 1.085 Å) and (l, d)max from the compound with the highest tilting (Hf(NCN)2, θ = 27.72°, l = 3.476 Å, d = 1.310 Å). Hence, the minimum and maximum allowed size for a cation A with ionic radii rA are given by:

r min = ( l min 3 2 ( r A + r N ) 2 d min 2 ) 2 + d min 2 + ( l min 2 ) 2 r N
r max = ( l max 3 2 ( r A + r N ) 2 d max 2 ) 2 + d max 2 + ( l max 2 ) 2 r N

For example, starting with Fe2+ and rA = 0.780 Å, the minimum and maximum sizes would be given by:

r min = ( 3.153 3 2 ( 0.780 + 1.46 ) 2 1.085 2 ) 2 + 1.085 2 + ( 3.153 2 ) 2 1.46
r min = 0.603 Å
r max = ( 3.476 3 2 ( 0.780 + 1.46 ) 2 1.310 2 ) 2 + 1.310 2 + ( 3.476 2 ) 2 1.46
r max = 1.022 Å

With a similar analysis equation (1) for ions from Al3+ to Tl + may be solved. The results are presented in the next table:

ion rA (Å) rBmin (Å) rBmax (Å) ion rA (Å) rBmin (Å) rBmax (Å)
Al3+ 0.535 0.726 1.186 Ho3+ 0.901 0.556 0.954
Cr3+ 0.615 0.682 1.128 Dy3+ 0.912 0.552 0.949
Ni2+ 0.690 0.644 1.078 Tb3+ 0.923 0.549 0.943
Sn4+ 0.690 0.644 1.078 Gd3+ 0.938 0.543 0.936
Hf4+ 0.710 0.635 1.065 Eu3+ 0.947 0.541 0.931
Mg2+ 0.720 0.630 1.058 Cd2+ 0.950 0.540 0.930
Zr4+ 0.720 0.630 1.058 Sm3+ 0.958 0.537 0.926
Cu2+ 0.730 0.626 1.052 Nd3+ 0.983 0.529 0.914
Zn2+ 0.740 0.621 1.046 Pr3+ 0.990 0.527 0.910
Sc3+ 0.745 0.619 1.043 Ca2+ 1.000 0.524 0.906
Co2+ 0.745 0.619 1.043 Ce3+ 1.010 0.521 0.901
Li+ 0.760 0.612 1.034 Na+ 1.020 0.518 0.897
Fe2+ 0.780 0.603 1.022 Hg2+ 1.020 0.518 0.897
In3+ 0.800 0.595 1.010 La3+ 1.032 0.515 0.891
Mn2+ 0.830 0.583 0.993 Ag+ 1.150 0.487 0.843
Lu3+ 0.861 0.571 0.976 Sr2+ 1.180 0.481 0.832
Yb3+ 0.868 0.568 0.972 Pb2+ 1.190 0.479 0.828
Tm3+ 0.880 0.564 0.966 Ba2+ 1.350 0.459 0.778
Er3+ 0.890 0.560 0.960 K+ 1.380 0.457 0.771
Y3+ 0.900 0.557 0.955 Tl+ 1.500 0.454 0.745

2 Mathematical background of anionic tilting

Figure 5 suggests a relation between the tilting angle and the distortion | 2 δ | according to sin θ = | 2 δ | d NCN . That is to say that a large distortion in the N position as regards the base cations translates into a large tilting angle. Figure 5b allows to derive an expression for the distortion, | 2 δ | , according to:

| 2 δ | = d AN ´ d BN ´ = d AN . cos α A d BN . cos α B , where  sin α A = d d AN < sin α B = d d BN

Then, since cos αA > cos αB we may write:

cosαA = cosαB·(1 + k), k > 0

Therefore, | 2 δ | = cos α B · ( d AN · ( 1 + k ) d BN ) or

(5) | 2 δ | = cos α B · ( r A r B + k · d AN )

For the case of compounds with empty sites, inspecting the coordination environment of NCN2− lets one deduce that the behavior of the empty sites is similar to that of a large cation. Then, from equation (5) assuming that the site of cation A is empty we obtain:

(6) | 2 ε | = cos α B . ( r r B + k · d N )

Here r is the size of the empty site and d⊡N is the virtual distance between the empty site and the N atom. If we consider that the size of the empty site is proportional to the size of the ion B, we may write: r = m·rB, m > 1. Therefore, eq. (6) becomes | 2 ε | = cos α B · ( r B · ( m 1 ) + k · d N ) , so one realizes that the distortion in the N atoms and, also, the tilting angle, is proportional to the size of the B cation, rB.

The results of calculating the total distortion for 21 binary, ternary, and quaternary compounds are presented in the next table:

Compound Space group Environment from Figure 6 δ total (Å) θtotal (°)
FeNCN P63/mmc (c) 0.0 0.0
CoNCN P63/mmc (c) 0.0 0.0
NiNCN P63/mmc (c) 0.0 0.0
Sm2(NCN)3 C2/m (f) rB = 0.958 10.67
Hf(NCN)2 Pbcn (h) ≈2 × 0.71 = 1.420 27.72
LiAl(NCN)2 Pbcn (a) ≈2 × (0.76 − 0.535) = 0.450 9.81
LiIn(NCN)2 Pbcn (a) ≈2 × (0.80 − 0.76) = 0.080 6.74
LiYb(NCN)2 Pbcn (a) ≈2 × (0.868 − 0.76) = 0.216 1.39
LiY(NCN)2 Pbcn (a) ≈2 × (0.90 − 0.76) = 0.280 3.07
NaSc(NCN)2 Pbcn (a) ≈2 × (1.02 − 0.745) = 0.550 10.27
NaIn(NCN)2 Cmcm (a) ≈2 × (1.02 − 0.80) = 0.440 10.61
Li2Hf(NCN)3 R 3 c (d) 3 × (0.76 − 0.71) = 0.087 4.23
Li2Zr(NCN)3 R 3 c (d) 3 × (0.76 − 0.72) = 0.069 4.69
Li2Sn(NCN)3 Pnna (d) 3 × (0.76 − 0.69) = 0.121 3.45
Li2Sn(NCN)3 Pnna (e) ≈(0.76 − 0.69) = 0.070 4.46
Na2Sn(NCN)3 Pnna (d) 3 × (1.02 − 0.69) = 0.572 13.15
Na2Sn(NCN)3 Pnna (e) ≈(1.02 − 0.69) = 0.330 5.76
Li2MgSn2(NCN)6 P 3 1m (i) ≈(0.76 − 0.69) + 0.72 = 0.790 6.08
Li2MnSn2(NCN)6 P 3 1m (i) ≈(0.76 − 0.69) + 0.83 = 0.900 11.51
Na2MnSn2(NCN)6 P 3 1m (i) ≈(1.02 − 0.69) + 0.83 = 1.160 13.66
Na2FeSn2(NCN)6 P 3 1m (i) ≈(1.02 − 0.69) + 0.78 = 1.110 16.72
Na2CoSn2(NCN)6 P 3 1m (i) ≈(1.02 − 0.69) + 0.745 = 1.075 16.28
Na2NiSn2(NCN)6 P 3 1m (i) ≈(1.02 − 0.69) + 0.69 = 1.020 16.14

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved the submission.

  3. Competing interests: The authors declare no conflict of interest regarding this article.

  4. Research funding: Juan Medina-Jurado is grateful for the financial support from Deutscher Akademischer Austauschdienst (DAAD). Alex Corkett is indebted to the Deutsche Forschungsgemeinschaft (DFG) for funding (project number 441856704).

  5. Data availability: All data are available within the manuscript.

References

1. Liu, X., Müller, P., Kroll, P., Dronskowski, R. Inorg. Chem. 2002, 41, 4259–4265; https://doi.org/10.1021/ic020133g.Search in Google Scholar PubMed

2. Meyer, H.-J. Dalton Trans. 2010, 39, 5973–5982; https://doi.org/10.1039/c001031f.Search in Google Scholar PubMed

3. Corkett, A. J., Konze, P. M., Dronskowski, R. Inorganics 2018, 6, 1; https://doi.org/10.3390/inorganics6010001.Search in Google Scholar

4. Corkett, A. J., Konze, P. M., Dronskowski, R. Z. Anorg. Allg. Chem. 2017, 643, 1456–1461; https://doi.org/10.1002/zaac.201700225.Search in Google Scholar

5. Corkett, A. J., Chen, K., Dronskowski, R. Eur. J. Inorg. Chem. 2020, 2596–2602.10.1002/ejic.202000244Search in Google Scholar

6. Gibson, K., Ströbele, M., Blaschkowski, B., Glaser, J., Weisser, M., Srinivasam, R., Kolb, H. J., Meyer, H.-J. Z. Anorg. Allg. Chem. 2003, 629, 1863–1870; https://doi.org/10.1002/zaac.200300129.Search in Google Scholar

7. Liu, X., Stork, L., Speldrich, M., Lueken, H., Dronskowski, R. Chem. Eur. J. 2009, 15, 1558–1561; https://doi.org/10.1002/chem.200802422.Search in Google Scholar PubMed

8. Berger, U., Schnick, W. J. Alloys Compd. 1994, 206, 179–184; https://doi.org/10.1016/0925-8388(94)90032-9.Search in Google Scholar

9. Qiao, X., Ma, Z., Luo, D., Corkett, A. J., Slabon, A., Rokicinska, A., Kustrowski, P., Dronskowski, R. Dalton Trans. 2020, 49, 14061–14067; https://doi.org/10.1039/d0dt02677h.Search in Google Scholar PubMed

10. Kubus, M., Heinicke, R., Ströbele, M., Enseling, D., Jüstel, T., Meyer, H.-J. Mater. Res. Bull. 2015, 62, 37–41; https://doi.org/10.1016/j.materresbull.2014.10.073.Search in Google Scholar

11. Unverfehrt, L., Ströbele, M., Meyer, H.-J. Z. Anorg. Allg. Chem. 2013, 639, 22–24; https://doi.org/10.1002/zaac.201200385.Search in Google Scholar

12. Kallenbach, P., Ströbele, M., Meyer, H.-J. Z. Anorg. Allg. Chem. 2020, 646, 1281–1284; https://doi.org/10.1002/zaac.202000212.Search in Google Scholar

13. Tang, X., Xiang, H., Liu, X., Speldrich, M., Dronskowski, R. Angew. Chem. Int. Ed. 2010, 49, 4738–4742; https://doi.org/10.1002/anie.201000387.Search in Google Scholar PubMed

14. Dronskowski, R. Z. Naturforsch. 1995, 50b, 1245–1251.10.1515/znb-1995-0819Search in Google Scholar

15. Dolabdjian, K., Castro, C., Meyer, H.-J. Eur. J. Inorg. Chem. 2018, 1624–1630.10.1002/ejic.201800183Search in Google Scholar

16. Pöttgen, R., Corkett, A. J., Dronskowski, R. Z. Kristallogr. 2023, 238, 95–103.Search in Google Scholar

17. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767.10.1107/S0567739476001551Search in Google Scholar

18. Unverfehrt, L., Ströbele, M., Glaser, J., Meyer, H.-J. Z. Anorg. Allg. Chem. 2009, 635, 1947–1952; https://doi.org/10.1002/zaac.200900221.Search in Google Scholar

19. Dolabdjian, K., Kobald, A., Romao, C. P., Meyer, H.-J. Dalton Trans. 2018, 47, 10249–10255; https://doi.org/10.1039/c8dt02001a.Search in Google Scholar PubMed

20. Neukirch, M., Tragl, S., Meyer, H.-J. Inorg. Chem. 2006, 45, 8188–8193; https://doi.org/10.1021/ic0608952.Search in Google Scholar PubMed

21. Corkett, A. J., Chen, Z., Ertural, C., Slabon, A., Dronskowski, R. Inorg. Chem. 2022, 61, 18221–18228; https://doi.org/10.1021/acs.inorgchem.2c03043.Search in Google Scholar PubMed

22. Corkett, A. J., Dronskowski, R. Dalton Trans. 2019, 48, 15029–15035; https://doi.org/10.1039/c9dt03062j.Search in Google Scholar PubMed

23. Qiao, X., Corkett, A. J., Stoffel, R. P., Dronskowski, R. Z. Anorg. Allg. Chem. 2021, 647, 2162–2166; https://doi.org/10.1002/zaac.202100132.Search in Google Scholar

24. Krott, M., Liu, X., Fokwa, B., Speldrich, M., Lueken, H., Dronskowski, R. Inorg. Chem. 2007, 46, 2204–2207; https://doi.org/10.1021/ic062051o.Search in Google Scholar PubMed

Received: 2023-10-25
Accepted: 2023-12-05
Published Online: 2023-12-25
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0049/html
Scroll to top button