Skip to main content
Log in

Jasmonates and salicylic acid as enigmatic orchestrators of capitula senescence in Cosmos sulphureus Cav.

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The fine-tuning of the intricate network of plant growth hormones empowers the balanced responses of plants to environmental and developmental signals. Salicylic acid and jasmonates are emerging as advanced hormones that provide plants with resistance to environmental stresses. Senescence is characterized by coordinated and systematic crosstalk between phytohormones that remodels the biochemical and physiological mechanisms in plants, resulting in cell death. The present investigation examines the role of jasmonates (methyl jasmonate and jasmonic acid) and salicylic acid (SA) in regulating the petal senescence of detached stalks of Cosmos sulphureus. Based on our results, it was revealed that SA and jasmonic acid (JA) at 40 μM and methyl jasmonate (MJ) at 0.75 μM concentration delayed the senescence of detached flowers of C. sulphureus considerably. These growth regulators improved the membrane stability, reinforced the antioxidant enzyme activities and averted the upsurge of hydrogen peroxide (H2O2) content in the petals. Additionally, SA and jasmonates preserved higher content of total phenols, reducing sugars and soluble proteins in the petals, besides impeding the bacterial growth in testing solutions which corroborated with the maximum solution uptake. The elevated soluble protein content was found to be associated with low specific protease activity (SPA) and α-amino acid content in the petal tissues. Our study concluded that SA and jasmonates delayed flower senescence by averting oxidative stress and maintaining the nutritional status of the petals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ahmad SS, Tahir I (2018) Putrescine and jasmonates outplay conventional growth regulators in improving postharvest performance of Iris germanica L. cut scapes. PNAS India Sect B Biol Sci 88(1):391–402

    CAS  Google Scholar 

  • Ahmad P, Raja V, Ashraf M, Wijaya L, Bajguz A, Alyemeni MN (2021) Jasmonic acid (JA) and gibberellic acid (GA3) mitigated Cd-toxicity in chickpea plants through restricted cd uptake and oxidative stress management. Sci Rep 11(1):19768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24(12):1337–1344

    Article  CAS  Google Scholar 

  • Ali B (2021) Role of salicylic acid in pre-and post-harvest attributes in horticulture. Salicylic Acid-A Versatile Plant Growth Regul 47–64

  • Arif Y, Singh P, Siddiqui H, Hayat S (2021) Interplay between salicylates and jasmonates under stress. Salicylic Acid-A Versatile Plant Growth Regul 153–173

  • Arora A, Singh VP, Sindhu SS, Rao DN, Voleti SR (2007) Oxidative stress mechanisms during flower senescence. Plant Stress 1(2):157–172

    Google Scholar 

  • Axelrod B, Cheesbrough TM, Laakso S (1981) Lipoxygenase from soybeans: EC 1.13. 11.12 Linoleate: oxygen oxidoreductase. In: Methods in enzymology. Academic Press, vol 71, pp 441–451

  • Aziz S, Younis A, Jaskani MJ, Ahmad R (2020) Effect of PGRs on antioxidant activity and phytochemical in delay senescence of lily cut flowers. Agronomy 10(11):1704

    Article  CAS  Google Scholar 

  • Bagheri M, Esna-Ashari M (2022) Effects of postharvest methyl jasmonate treatment on persimmon quality during cold storage. Sci Hortic 294:110756

    Article  CAS  Google Scholar 

  • Baswal AK, Dhaliwal HS, Singh Z, Mahajan BVC (2021) Post-harvest application of methyl Jasmonate, 1-methylcyclopropene and salicylic acid elevates health-promoting compounds in cold-stored ‘Kinnow’ Mandarin (Citrus nobilis Lour x C. deliciosa Tenora) Fruit. Int J Fruit Sci 21(1):147–157

    Article  Google Scholar 

  • Bayat H, Aminifard MH (2017) Salicylic acid treatment extends the vase life of five commercial cut flowers. Electron J Biol 13(1):67–72

    Google Scholar 

  • Belay ZA, James Caleb O (2022) Role of integrated omics in unravelling fruit stress and defence responses during postharvest: a review. Food Chem Mol Sci 5:100118. https://doi.org/10.1016/j.fochms.2022.100118

    Article  CAS  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30(7):987–998

    CAS  Google Scholar 

  • Chen Y, Sun J, Lin H, Lin M, Lin Y, Wang H et al (2020) Salicylic acid treatment suppresses Phomopsis longanae chi-induced disease development of postharvest longan fruit by modulating membrane lipid metabolism. Postharvest Biol Tech 164:111168. https://doi.org/10.1016/j.postharvbio.2020.111168

    Article  CAS  Google Scholar 

  • Damalas CA, Koutroubas SD (2021) Foliar applications of salicylic acid for improving crop tolerance to drought stress: a review. Salicyl Acid-A Versatile Plant Growth Regul 65–76

  • Dhindsa RS, Plumb-Dhindsa PAMELA, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101

    Article  CAS  Google Scholar 

  • Eason JR, Johnston JW, de Vré L (2000) Reversal of glyphosate inhibition of Sandersonia aurantiaca flower senescence with aromatic amino acids. Postharvest Biol Technol 18(1):81–84

    Article  CAS  Google Scholar 

  • Elomaa P, Zhao Y, Zhang T (2018) Flower heads in Asteraceae—recruitment of conserved developmental regulators to control the flower-like inflorescence architecture. Hortic Res 5

  • Ershad Langroudi M, Hashemabadi D, Kalatejari S, Asadpour L (2020) Effects of pre-and postharvest applications of salicylic acid on the vase life of cut Alstroemeria flowers (Alstroemeria hybrida). J Hortic Postharvest Res 3(1):115–124

    Google Scholar 

  • Forlani G, Trovato M, Funck D, Signorelli S (2019) Regulation of proline accumulation and its molecular and physiological functions in stress defence. Osmoprotectant-mediated abiotic stress tolerance in plants. Springer, Cham, pp 73–97

    Chapter  Google Scholar 

  • Ge W, Zhao Y, Kong X, Sun H, Luo M, Yao M, Wei B, Ji S (2020) Combining salicylic acid and trisodium phosphate alleviates chilling injury in bell pepper (Capsicum annuum L.) through enhancing fatty-acid desaturation efficiency and water retention. Food Chem 327:127057

    Article  CAS  PubMed  Google Scholar 

  • Ghafari H, Hassanpour H, Jafari M, Besharat S (2020) Physiological, biochemical and gene-expressional responses to water deficit in apple subjected to partial root-zone drying (PRD). Plant Physiol Biochem 148:333–346

    Article  CAS  PubMed  Google Scholar 

  • Haq A, Lone ML, Farooq S, Parveen S, Altaf F, Tahir I, Kaushik P, El-Serehy HA (2022) Efficacy of salicylic acid in modulating physiological andbiochemical mechanisms to improve postharvest longevity in cut spikes of Consolida ajacis (L.) Schur. Saudi J Biol Sci 29(2):713–720

    Article  Google Scholar 

  • Hayat S, Hasan SA, Fariduddin Q, Ahmad A (2008) Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J Plant Interact 3(4):297–304

    Article  CAS  Google Scholar 

  • Hayat S, Siddiqui H, Damalas CA (eds) (2021) Salicylic acid-a versatile plant growth regulator. Springer International Publishing, Heidelberg

    Google Scholar 

  • Horibe T, Yamaki S, Yamada K (2013) Effects of auxin and methyl jasmonate on cut rose petal growth through activation of acid invertase. Postharvest Biol Technol 86:195–200

    Article  CAS  Google Scholar 

  • Horibe T (2022) Post-harvest physiology of cut flowers: use of methyl jasmonate as a quality-retention agent. Jasmonates Brassinosteroids Plants 199–204

  • Howe GA, Major IT, Koo AJ (2018) Modularity in jasmonate signaling for multistress resilience. Annu Rev Plant Biol 69:387–415

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68(6):1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Liu B, Liu L, Song S (2017) Jasmonate action in plant growth and development. J Exp Bot 68(6):1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Huang L, Chen J, Zhang Y, Kai W, Chen C (2022) Maintenance of postharvest storability and overall quality of ‘Jinshayou’pummelo fruit by salicylic acid treatment. Front Plant Sci 13:1086375

    Article  PubMed  Google Scholar 

  • Hunter DA, Ferrante A, Vernieri P, Reid MS (2004) Role of abscisic acid in perianth senescence of daffodil (Narcissus pseudonarcissus “Dutch Master”). Physiol Plant 121(2):313–321

    Article  CAS  PubMed  Google Scholar 

  • Jones ML (2013) Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and-insensitive flowers. AoB Plants 5:plt023

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur H, Manna M, Thakur T, Gautam V, Salvi P (2021) Imperative role of sugar signaling and transport during drought stress responses in plants. Physiol Plant 171(4):833–848

    Article  CAS  PubMed  Google Scholar 

  • Khandan-Mirkohi A, Pirgazi R, Taheri MR, Ajdanian L, Babaei M, Jozay M, Hesari M (2021) Effects of salicylic acid and humic material preharvest treatments on postharvest physiological properties of statice cut flowers. Sci Hortic 283:110009

    Article  CAS  Google Scholar 

  • Kondo M, Nakajima T, Shibuya K, Ichimura K (2020) Comparison of petal senescence between cut and intact carnation flowers using potted plants. Sci Hortic 272:109564

    Article  CAS  Google Scholar 

  • Kumar N, Tokas J, Raghavendra M, Singal HR (2021) Impact of exogenous salicylic acid treatment on the cell wall metabolism and ripening process in postharvest tomato fruit stored at ambient temperature. Int J Food Sci Tech 56:2961–2972. https://doi.org/10.1111/ijfs.14936

    Article  CAS  Google Scholar 

  • Li Y, He H, Hou Y, Kelimu A, Wu F, Zhao Y et al (2022) Salicylic acid treatment delays apricot (Prunus armeniaca L.) fruit softening by inhibiting ethylene biosynthesis and cell wall degradation. Sci Hortic 300:111061. https://doi.org/10.1016/j.scienta.2022.1110

    Article  CAS  Google Scholar 

  • Li K, Zhang C, Cao J, Qu G (2022b) Characteristics of histological alterations and hormone-variations in floral tissues of edible daylily (Hemerocallis citrina) buds during postharvest senescence. Postharvest Biol Technol 193:112054

    Article  CAS  Google Scholar 

  • Liu H, Timko MP (2021) Jasmonic acid signaling and molecular crosstalk with other phytohormones. Int J Mol Sci 22(6):2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tang Y, Zhang W, Liang R, Luo K, Jiang X, Yang P, Leifeng X, Ming J (2023) Postharvest methyl jasmonate treatment enhanced biological activity by promoting phenylpropanoid metabolic pathways in Lilium brownii var. viridulum. Sci Hortic 308:111551

    Article  CAS  Google Scholar 

  • Lone ML, Haq AU, Farooq S, Altaf F, Tahir I (2021) Nitric oxide effectively curtails neck bending and mitigates senescence in isolated flowers of Calendula officinalis L. Physiol Mol Biol Plants 27:835–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Ma C, Liu Y, Shahid MO, Wang C, Gao J (2018) Petal senescence: a hormone view. J Exp Bot 69(4):719–732. https://doi.org/10.1093/jxb/ery009

    Article  CAS  PubMed  Google Scholar 

  • Miryeganeh M (2021) Senescence: the compromised time of death that plants may call on themselves. Genes 12(2):143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naing AH, Lee K, Kim KO, Ai TN, Kim CK (2017) Involvement of sodium nitroprusside (SNP)in the mechanism that delays stem bending of different gerbera cultivars. Front Plant Sci 8:2045. https://doi.org/10.3389/fpls.2017.02045

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153(2):375–380

    Article  CAS  Google Scholar 

  • Nguyen TH, Goossens A, Lacchini E (2022) Jasmonate: a hormone of primary importance for plant metabolism. Curr Opin Plant Biol 67:102197

    Article  CAS  PubMed  Google Scholar 

  • Nisar S, Dar RA, Tahir I (2021) Salicylic acid retards senescence and makes flowers last longer in Nicotiana plumbaginifolia (Viv). Plant Physiol Rep 26(1):128–136

    Article  CAS  Google Scholar 

  • Norman C, Howell KA, Millar AH, Whelan JM, Day DA (2004) Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol 134(1):492–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panavas T, Rubinstein B (1998) Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Sci 133(2):125–138

    Article  CAS  Google Scholar 

  • Park CH, Yeo HJ, Park YE, Chun SW, Chung YS, Lee SY, Park SU (2019) Influence of chitosan, salicylic acid and jasmonic acid on phenylpropanoid accumulation in germinated buckwheat (Fagopyrum esculentum Moench). Foods 8(5):153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourzarnegar F, Hashemabadi D, Kaviani B (2020) Cerium nitrate and salicylic acid on vase life, lipid peroxidation, and antioxidant enzymes activity in cut lisianthus flowers. Ornament Hortic 26(4):658–669

    Article  Google Scholar 

  • Rahmani I, Ahmadi N, Ghanati F, Sadeghi M (2015) Effects of salicylic acid applied pre-or post-transport on post-harvest characteristics and antioxidant enzyme activity of gladiolus cut flower spikes. N Z J Crop Hortic Sci 43(4):294–305

    Article  CAS  Google Scholar 

  • Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, Siddiqui MH, Hasanuzzaman M (2021) Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Rep 40(8):1513–1541

    Article  CAS  PubMed  Google Scholar 

  • Rogers HJ (2006) Programmed cell death in floral organs: How and why do flowers die? Ann Bot 97(3):309–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers HJ (2013) From models to ornamentals: How is flower senescence regulated? Plant Mol Biol 82:563–574

    Article  CAS  PubMed  Google Scholar 

  • Rosen H (1957) A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys 67(1):10–15

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK (1994) Effect of moisture-stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 32:594–594

    Google Scholar 

  • Sang Y, Liu Y, Tang Y, Yang W, Guo M, Chen G (2022) Transcriptome sequencing reveals mechanism of improved antioxidant capacity and maintained postharvest quality of winter jujube during cold storage after salicylic acid treatment. Postharvest Biol Technol 189:111929

    Article  CAS  Google Scholar 

  • Sedaghat M, Sarvestani ZT, Emam Y, Bidgoli AM, Sorooshzadeh A (2020) Foliar-applied GR24 and salicylic acid enhanced wheat drought tolerance. Russ J Plant Physiol 67:733–739

    Article  CAS  Google Scholar 

  • Serna-Escolano V, Martínez-Romero D, Giménez MJ, Serrano M, García-Martínez S, Valero D, Valverde JM, Zapata PJ (2021) Enhancing antioxidant systems by preharvest treatments with methyl jasmonate and salicylic acid leads to maintain lemon quality during cold storage. Food Chemistry 338:128044

    Article  CAS  PubMed  Google Scholar 

  • Shabanian S, Esfahani MN, Karamian R, Tran LSP (2018) Physiological and biochemical modifications by postharvest treatment with sodium nitroprusside extend vase life of cut flowers of two gerbera cultivars. Postharvest Biol Technol 137:1–8

    Article  CAS  Google Scholar 

  • Shahri W, Tahir I (2014) Flower senescence: some molecular aspects. Planta 239(2):277–297

    Article  CAS  PubMed  Google Scholar 

  • Sinha A, Gill PP, Jawandha SK, Kaur P, Grewal SK (2022) Salicylic acid enriched beeswax coatings suppress fruit softening in pears by modulation of cell wall degrading enzymes under different storage conditions. Food Packag Shelf 32:100821. https://doi.org/10.1016/j.fpsl.2022.100821

    Article  CAS  Google Scholar 

  • Skutnik E, Jędrzejuk A, Rabiza-Świder J, Rochala-Wojciechowska J, Latkowska M, Łukaszewska A (2020) Nano-silver as a novel biocide for control of senescence in garden cosmos. Sci Rep 10(1):1–9. https://doi.org/10.1038/s41598-020-67098-z

    Article  CAS  Google Scholar 

  • Song X, Li R, Zhang Q, He S, Wang Y (2022) Antibacterial effect and possible mechanism of salicylic acid microcapsules against Escherichia coli and Staphylococcus aureus. Int J Environ Res Public Health 19(19):12761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Qin M, Yu Q, Huang Z, Xiao Y, Li Y, Ma N, Gao J (2021) Molecular understanding of postharvest flower opening and senescence. Mol Hortic 1(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J Sci Food Agric 10(1):63–68

    Article  CAS  Google Scholar 

  • Tang T, Zhou H, Wang L, Zhao J, Ma L, Ling J, Li G, Huang W, Li P, Zhang Y (2022) Post-harvest application of methyl jasmonate or prohydrojasmon affects color development and anthocyanins biosynthesis in peach by regulation of sucrose metabolism. Front Nutr 9:871467

    Article  PubMed  PubMed Central  Google Scholar 

  • Tayyab S, Qamar S (1992) A look into enzyme kinetics: some introductory experiments. Biochem Educ 20(2):116–118

    Article  CAS  Google Scholar 

  • van Doorn WG (2004) Is petal senescence due to sugar starvation? Plant Physiol 134(1):35–42

    Article  PubMed  PubMed Central  Google Scholar 

  • van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59(3):453–480. https://doi.org/10.1093/jxb/erm356

    Article  CAS  PubMed  Google Scholar 

  • Wan S, Xin XF (2022) Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot. J Genet Genom

  • Wojciechowska N, Sobieszczuk-Nowicka E, Bagniewska-Zadworna A (2018) Plant organ senescence–regulation by manifold pathways. Plant Biol 20(2):167–181. https://doi.org/10.1111/plb.12672

    Article  CAS  PubMed  Google Scholar 

  • Zeb A (2020) Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem 44(9):e13394

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Yin J, Guo X, Chen X, Zhi W, Liu J, Wang Y, Lu H, Jiao X, Zhou G (2019) Gibberellic acid amended antioxidant enzyme and osmotic regulation to improve salt tolerance of okra at early growth stage. Int J Agric Biol 22(2):270–276

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Mohammad Arif Zargar, Assistant Professor, Department of Botany, University of Kashmir for his valuable suggestions throughout this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inayatullah Tahir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lone, M.L., Farooq, S., ul Haq, A. et al. Jasmonates and salicylic acid as enigmatic orchestrators of capitula senescence in Cosmos sulphureus Cav.. Physiol Mol Biol Plants 29, 1863–1874 (2023). https://doi.org/10.1007/s12298-023-01407-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-023-01407-4

Keywords

Navigation