Skip to main content

Advertisement

Log in

Comparative study of machine learning methods for modeling associations between risk factors and future dementia cases

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

A substantial portion of dementia risk can be attributed to modifiable risk factors that can be affected by lifestyle changes. Identifying the contributors to dementia risk could prove valuable. Recently, machine learning methods have been increasingly applied to healthcare data. Several studies have attempted to predict dementia progression by using such techniques. This study aimed to compare the performance of different machine-learning methods in modeling associations between known cognitive risk factors and future dementia cases. A subset of the AGES-Reykjavik Study dataset was analyzed using three machine-learning methods: logistic regression, random forest, and neural networks. Data were collected twice, approximately five years apart. The dataset included information from 1,491 older adults who underwent a cognitive screening process and were considered to have healthy cognition at baseline. Cognitive risk factors included in the models were based on demographics, MRI data, and other health-related data. At follow-up, participants were re-evaluated for dementia using the same cognitive screening process. Various performance metrics for all three machine learning algorithms were assessed. The study results indicate that a random forest algorithm performed better than neural networks and logistic regression in predicting the association between cognitive risk factors and dementia. Compared to more traditional statistical analyses, machine-learning methods have the potential to provide more accurate predictions about which individuals are more likely to develop dementia than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The work performed for this study falls under the machine learning approach to logistic regression, but there is, however, also a reference to a previous publication [28] that applies logistic regression using traditional statistics.

References

  1. Smith GE, Bondi MW. Mild Cognitive Impairment and Dementia: Definitions, Diagnosis, and Treatment. Oxford, New York: Oxford University Press; 2013.

    Google Scholar 

  2. Cahill S, Pierce M, Werner P, Darley A, Bobersky A. A systematic review of the public’s knowledge and understanding of Alzheimer’s disease and dementia. Alzheimer Dis Assoc Disord. 2015;29(3):255–75. https://doi.org/10.1097/WAD.0000000000000102.

    Article  PubMed  Google Scholar 

  3. Livingston G, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet. 2020;396(10248):413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.

    Article  Google Scholar 

  4. Qiu C, Fratiglioni L. Aging without dementia is achievable: Current evidence from epidemiological research. J Alzheimers Dis. 2018;62(3):933–42. https://doi.org/10.3233/JAD-171037.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gatz M, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74. https://doi.org/10.1001/archpsyc.63.2.168.

    Article  PubMed  Google Scholar 

  6. World Health Organization. Global status report on the public health response to dementia,” World Health Organization, Geneva, 2021. Accessed: Jul. 26, 2022. [Online]. Available: https://www.who.int/publications-detail-redirect/9789240033245

  7. Clare L, et al. Potentially modifiable lifestyle factors, cognitive reserve, and cognitive function in later life: A cross-sectional study. PLoS Med. 2017;14(3):e1002259. https://doi.org/10.1371/journal.pmed.1002259.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Román GC, Jackson RE, Gadhia R, Román AN, Reis J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Revue Neurologique. 2019;175(10):724–41. https://doi.org/10.1016/j.neurol.2019.08.005.

    Article  PubMed  Google Scholar 

  9. Antoniou M. The advantages of bilingualism debate. Annu Rev Linguist. 2019;5(1):395–415. https://doi.org/10.1146/annurev-linguistics-011718-011820.

    Article  Google Scholar 

  10. Bubu OM et al. Sleep, cognitive impairment, and Alzheimer’s disease: A systematic review and meta-analysis. Sleep (2017); 40(1). https://doi.org/10.1093/sleep/zsw032

  11. Shi L, et al. Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis. Sleep Med Rev. 2018;40:4–16. https://doi.org/10.1016/j.smrv.2017.06.010.

    Article  PubMed  Google Scholar 

  12. Sindi S, et al. Sleep disturbances and dementia risk: A multicenter study. Alzheimer’s & Dementia. 2018;14(10):1235–42. https://doi.org/10.1016/j.jalz.2018.05.012.

    Article  Google Scholar 

  13. Beauchet O, et al. Poor gait performance and prediction of dementia: Results from a meta-analysis. J Am Med Dir Assoc. 2016;17(6):482–90. https://doi.org/10.1016/j.jamda.2015.12.092.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Blankevoort CG, et al. Physical predictors of cognitive performance in healthy older adults: A cross-sectional analysis. PLoS One. 2013;8(7):e70799. https://doi.org/10.1371/journal.pone.0070799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cooper R, et al. Objective measures of physical capability and subsequent health: a systematic review. Age Ageing. 2011;40(1):14–23. https://doi.org/10.1093/ageing/afq117.

    Article  PubMed  Google Scholar 

  16. Cui M, Zhang S, Liu Y, Gang X, Wang G. Grip strength and the risk of cognitive decline and dementia: A systematic review and meta-analysis of longitudinal cohort studies. Front Aging Neurosci (2021); 13 Accessed: Apr. 10, 2023. [Online]. Available: https://www.frontiersin.org/articles/https://doi.org/10.3389/fnagi.2021.625551

  17. Duchowny KA, et al. Associations between handgrip strength and dementia risk, cognition, and neuroimaging outcomes in the UK Biobank Cohort Study. JAMA Netw Open. 2022;5(6):e2218314. https://doi.org/10.1001/jamanetworkopen.2022.18314.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alanazi HO, Abdullah AH, Qureshi KN. A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. J Med Syst. 2017;41(4):69. https://doi.org/10.1007/s10916-017-0715-6.

    Article  PubMed  Google Scholar 

  19. Wiens J, Shenoy ES. Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin Infect Dis. 2018;66(1):149–53. https://doi.org/10.1093/cid/cix731.

    Article  PubMed  Google Scholar 

  20. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268(1):70–6. https://doi.org/10.1097/SLA.0000000000002693.

    Article  PubMed  Google Scholar 

  21. Wallace ML, et al. Multidimensional sleep and mortality in older adults: A machine-learning comparison with other risk factors. J Gerontol: Series A. 2019;74(12):1903–9. https://doi.org/10.1093/gerona/glz044.

    Article  Google Scholar 

  22. Seligman B, Tuljapurkar S, Rehkopf D. Machine learning approaches to the social determinants of health in the health and retirement study. SSM - Population Health. 2018;4:95–9. https://doi.org/10.1016/j.ssmph.2017.11.008.

    Article  PubMed  Google Scholar 

  23. Javeed A, Dallora AL, Berglund JS, Ali A, Ali L, Anderberg P. Machine learning for dementia prediction: A systematic review and future research directions. J Med Syst. 2023;47(1):17. https://doi.org/10.1007/s10916-023-01906-7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Spooner A, et al. A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci Rep. 2020;10(1):1. https://doi.org/10.1038/s41598-020-77220-w.

    Article  CAS  Google Scholar 

  25. Casanova R, Saldana S, Lutz MW, Plassman BL, Kuchibhatla M, Hayden KM. Investigating predictors of cognitive decline using machine learning. J Gerontol B Psychol Sci Soc Sci. 2020;75(4):733–42. https://doi.org/10.1093/geronb/gby054.

    Article  PubMed  Google Scholar 

  26. Qiu S, et al. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain. 2020;143(6):1920–33. https://doi.org/10.1093/brain/awaa137.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Garcia-Gutierrez F, Delgado-Alvarez A, Delgado-Alonso C, et al. Diagnosis of Alzheimer’s disease and behavioural variant frontotemporal dementia with machine learning-aided neuropsychological assessment using feature engineering and genetic algorithms. Int J Geriatric Psychiatry. 2021:1–13. https://doi.org/10.1002/gps.5667.

  28. Valsdóttir V, et al. Exposure factors associated with dementia among older adults in Iceland: the AGES-Reykjavik study. GeroScience. 2023;45(3):1953–65. https://doi.org/10.1007/s11357-023-00804-7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Harris TB, et al. Age, gene/environment susceptibility–Reykjavik study: Multidisciplinary applied phenomics. Am J Epidemiol. 2007;165(9):1076–87. https://doi.org/10.1093/aje/kwk115.

    Article  PubMed  Google Scholar 

  30. Valsdóttir V, et al. Cognition and brain health among older adults in Iceland: the AGES-Reykjavik study. Geroscience. 2022;44(6):2785–800. https://doi.org/10.1007/s11357-022-00642-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abete P, et al. Cognitive impairment and cardiovascular diseases in the elderly. A heart–brain continuum hypothesis. Ageing Res Rev. 2014;18:41–52. https://doi.org/10.1016/j.arr.2014.07.003.

    Article  PubMed  Google Scholar 

  32. Cheng S-T. Cognitive reserve and the prevention of dementia: The role of physical and cognitive activities. Curr Psychiatry Rep. 2016;18(9):85. https://doi.org/10.1007/s11920-016-0721-2.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Feinkohl I, Price JF, Strachan MWJ, Frier BM. The impact of diabetes on cognitive decline: potential vascular, metabolic, and psychosocial risk factors. Alzheimer’s Research & Therapy. 2015;7(1):46. https://doi.org/10.1186/s13195-015-0130-5.

    Article  CAS  Google Scholar 

  34. Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochimica et Biophysica Acta (BBA) - Mol Basis Dis. 2017;1863(5):1037–45. https://doi.org/10.1016/j.bbadis.2016.04.017.

    Article  CAS  Google Scholar 

  35. Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: A review. Curr Hypertens Rep. 2017;19(3):24. https://doi.org/10.1007/s11906-017-0724-3.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Weiss J, Puterman E, Prather AA, Ware EB, Rehkopf DH. A data-driven prospective study of dementia among older adults in the United States. PLoS ONE. 2020;15(10):e0239994. https://doi.org/10.1371/journal.pone.0239994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zaninotto P, Batty GD, Allerhand M, Deary IJ. Cognitive function trajectories and their determinants in older people: 8 years of follow-up in the English Longitudinal Study of Ageing. J Epidemiol Community Health. 2018;72(8):685–94. https://doi.org/10.1136/jech-2017-210116.

    Article  PubMed  Google Scholar 

  38. McCarrey AC, An Y, Kitner-Triolo MH, Ferrucci L, Resnick SM. Sex differences in cognitive trajectories in clinically normal older adults. Psychol Aging. 2016;31(2):166–75. https://doi.org/10.1037/pag0000070.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Singh-Manoux A, et al. Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ. 2012;344:d7622. https://doi.org/10.1136/bmj.d7622.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Podsiadlo D, Richardson S. The timed ‘Up & Go’: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x.

    Article  CAS  PubMed  Google Scholar 

  41. Yesavage JA, et al. Development and validation of a geriatric depression screening scale: A preliminary report. J Psychiatr Res. 1982;17(1):37–49. https://doi.org/10.1016/0022-3956(82)90033-4.

    Article  PubMed  Google Scholar 

  42. Folstein MF, Folstein SE, McHugh PR. ‘Mini-mental state’: A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. https://doi.org/10.1016/0022-3956(75)90026-6.

    Article  CAS  PubMed  Google Scholar 

  43. Wechsler DW. WAIS-III: Wechsler adult intelligence scale. Manual. New York: Psychological Corporation; 1955.

    Google Scholar 

  44. Pedregosa F, et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  45. Cox DR. The Regression Analysis of Binary Sequences. J Royal Stat Soc Series B (Methodological). 1958;20(2):215–42.

    Google Scholar 

  46. Breiman L. Random Forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.1023/A:1010933404324.

    Article  Google Scholar 

  47. McCulloch WS, Pitts WH. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5(4):115–33. https://doi.org/10.1007/BF02478259.

  48. Stehman SV. Selecting and interpreting measures of thematic classification accuracy. Remote Sens Environ. 1997;62(1):77–89. https://doi.org/10.1016/S0034-4257(97)00083-7.

    Article  Google Scholar 

  49. Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The Balanced Accuracy and Its Posterior Distribution. In 2010 20th International Conference on Pattern Recognition (2010); 3121–3124. https://doi.org/10.1109/ICPR.2010.764

  50. Chinchor N. “MUC-4 Evaluation Metrics,” in Fourth Message Uunderstanding Conference (MUC-4): Proceedings of a Conference Held in McLean, Virginia (1992); 1992. Accessed: Mar. 09, 2023. [Online]. Available: https://aclanthology.org/M92-1002

  51. Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 1997;30(7):1145–59. https://doi.org/10.1016/S0031-3203(96)00142-2.

    Article  Google Scholar 

  52. Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics. 2000;16(5):412–24. https://doi.org/10.1093/bioinformatics/16.5.412.

    Article  CAS  PubMed  Google Scholar 

  53. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21:6. https://doi.org/10.1186/s12864-019-6413-7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Luque A, Carrasco A, Martín A, de las Heras A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition. 2019;91:216–31. https://doi.org/10.1016/j.patcog.2019.02.023.

    Article  Google Scholar 

  55. Hanczar B, Hua J, Sima C, Weinstein J, Bittner M, Dougherty ER. Small-sample precision of ROC-related estimates. Bioinformatics. 2010;26(6):822–30. https://doi.org/10.1093/bioinformatics/btq037.

    Article  CAS  PubMed  Google Scholar 

  56. Speiser JL, et al. Machine learning in aging: An example of developing prediction models for serious fall injury in older adults. J Gerontol: Series A. 2021;76(4):647–54. https://doi.org/10.1093/gerona/glaa138.

    Article  Google Scholar 

  57. Powers DMW. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. Int J Machine Learning Technol. 2011;2(1):37–63. https://doi.org/10.48550/arXiv.2010.16061.

    Article  Google Scholar 

Download references

Funding

This work was supported by The Foundation of St. Josef’s Hospital in cooperation with The Icelandic Gerontological Research Center, National University Hospital of Iceland; Landspítali – University Hospital Research Fund; the Icelandic Gerontological Society; the Council on Aging in Iceland; Helga Jónsdóttir and Sigurliði Kristjánsson Memorial Fund and the Sustainability Institute and Forum (SIF) at Reykjavik University.

The AGES-Reykjavik Study received funding from the National Institutes of Health, Intramural Research Programs of the National Institute of Aging and the National Eye Institute (grant number ZIAEY00401); National Institutes of Health (contract number N01-AG-1–2100); the Icelandic Heart Association and the Icelandic Parliament.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaka Valsdóttir.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valsdóttir, V., Jónsdóttir, M.K., Magnúsdóttir, B.B. et al. Comparative study of machine learning methods for modeling associations between risk factors and future dementia cases. GeroScience 46, 737–750 (2024). https://doi.org/10.1007/s11357-023-01040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-01040-9

Keywords

Navigation