Skip to main content
Log in

Ultrasonic Technologies in Producing Adhesive Joints: A Review

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

An overview of the current state of research on intensifying the processes of obtaining adhesive joints using ultrasonic vibrations is presented. Two types of ultrasound applications are considered: processing or preparing an adhesive composition before gluing and applying vibrations to the elements being glued. The main mechanisms that determine the increase in the properties of the resulting compounds are cavitation, which leads to the destruction of polymer chains and a decrease in the viscosity of the adhesive, and the sonic capillary effect, which consists in increasing the ability of the adhesive to fill micro- and submicron irregularities of the bonded surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. V. Lapina and N. I. Baurova, “Study of the properties of polymer materials used in the repair of road construction machines using the method of dynamomechanical analysis,” Vest. Mosk. Avtomob.-Dorozh. Gos. Tekh. Univ., No. 4, 28–33 (2018).

  2. S. K. Sundukov, R. I. Nigmetzyanov, and D. S. Fatyukhin, “Structure of the weld formed during the application of ultrasonic vibrations,” Russ. Metall. 2021, 1667–1672 (2021).

    Article  Google Scholar 

  3. R. I. Nigmetzyanov, S. K. Sundukov, and D. S. Fatyukhin, “Ultrasonic assembly of press-fit joints,” Russ. Eng. Res. 37, 1044–1047 (2017).

    Article  Google Scholar 

  4. N. I. Baurova and A. Y. Sergeev, “Structural studies of fracture patterns in adhesive joints after pullout testing,” Polym. Sci., Ser. D 7, 298–302 (2014).

    CAS  Google Scholar 

  5. D. S. Fatyukhin, “Ultrasonic cleaning equipment for automobile components,” Russ. Eng. Res. 32, 305–307 (2012).

    Article  Google Scholar 

  6. D. S. Fatyukhin et al., “A comparison of the effects of ultrasonic cavitation on the surfaces of 45 and 40Kh steels,” Metals 12, 138 (2022).

    Article  CAS  Google Scholar 

  7. R. I. Ningmetzyanov et al., “Dynamics of surface properties of steel Kh12MF during cavitation-erosion treatment,” Met. Sci. Heat Treat. 64, 236–242 (2022).

    Article  CAS  Google Scholar 

  8. A. Livanskiy et al., “Research on the influence of ultrasonic vibrations on paint coating properties,” Trans. FAMENA 40, 129–138 (2016).

    Google Scholar 

  9. R. L. V. Kumar, M. R. Bhat, and C. R. L. Murthy, “Some studies on evaluation of degradation in composite adhesive joints using ultrasonic techniques,” Ultrasonics 53, 1150–1162 (2013).

    Article  Google Scholar 

  10. J. Kowalczyk et al., “Adhesive joints of additively manufactured adherends: ultrasonic evaluation of adhesion strength,” Materials 15, 3290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. W. Wang and S. I. Rokhlin, “Evaluation of interfacial properties in adhesive joints of aluminum alloys using angle-beam ultrasonic spectroscopy,” J. Adhes. Sci. Technol. 5, 647–666 (1991).

    Article  CAS  Google Scholar 

  12. C. Jeenjitkaew and F. J. Guild, “The analysis of kissing bonds in adhesive joints,” Int. J. Adhes. Adhes. 75, 101–107 (2017).

    Article  CAS  Google Scholar 

  13. E. Wojtczak and M. Rucka, “Wave frequency effects on damage imaging in adhesive joints using lamb waves and RMS,” Materials 12, 1842 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. X. Xi, C. Yu, and W. Lin, “Investigation of nanographite/polyurethane electroconductive adhesives: preparation and characterization,” J. Adhes. Sci. Technol. 23, 1939–1951 (2009).

    Article  CAS  Google Scholar 

  15. M. Castaings et al., “Ultrasonic characterization of cohesive and adhesive properties of adhesive bonds,” J. Acoust. Soc. Am. 138, 1766–1766 (2015).

    Article  Google Scholar 

  16. A. Szewczak and M. Szelag, “Modifications of epoxy resins and their influence on their viscosity,” IOP Conf. Ser.: Mater. Sci. Eng. 471, 022038 (2019).

  17. A. Szewczak, “mpact of epoxy resin modification on their strength parameters,” Budownictwo i Architektura 18, 041–050 (2019).

  18. M. M. Ganiev, “Influence of ultrasonic machining on physico-mechanical properties of adhesive joints and epoxide compounds,” Russ. Aeronautics 51, 223–225 (2008).

    Article  Google Scholar 

  19. A. F. Magsumova, L. M. Amirova, and M. M. Ganiev, “The influence of ultrasonic treatment on the technological properties of epoxy oligomer,” Vestn. Kazan Gos. Tekh. Univ., No. 2, 8–10 (2005).

  20. L. M. Amirova and M. M. Ganiev, RF Patent No. 2283695 C2, Byull. Izobret., No. 6 (2006).

  21. V. M. Popov, A. N. Vnukov, and A. V. Latynin, “The influence of a combined physical field on the polymerization process of adhesives,” in Proceedings of 6 th International Scientific and Technical Symposium “Modern Energy and Resource Saving Sett Technologies,” 2017, pp. 30–32.

  22. V. M. Popov, O. R.Dornyak, and A. V. Latynin, “Towards the creation of adhesive joints of increased strength based on polymer adhesives modified by impact,” Plast. Massy., Nos. 3–4, 55–59 (2017).

    Google Scholar 

  23. E. V. Mironova, “Reducing the viscosity of rubber adhesive with ultrasound,” Omsk Nauch. Vestn., No. 2, 37–39 (2013).

  24. P. K. Ghosh et al., “Superior dissimilar adhesive joint of mild steel and aluminium using UDM processed epoxy based TiO2 nano-filler composite adhesive,” Composites, Part B 99, 224–234 (2016).

    Article  CAS  Google Scholar 

  25. P. K. Ghosh, A. Patel, and K. Kumar, “Adhesive joining of copper using nano-filler composite adhesive,” Polymer 87, 159–169 (2016).

    Article  CAS  Google Scholar 

  26. H. Wang et al., “Study on ultrasonic vibration-assisted adhesive bonding of CFRP laminates with laser ablation-treated surfaces,” Compos. Struct. 268, 113983 (2021).

    Article  CAS  Google Scholar 

  27. H. Wang et al., “Ultrasonic vibration-strengthened adhesive bonding of CFRP-to-aluminum joints,” J. Mater. Proc. Technol. 257, 213–226 (2018).

    Article  CAS  Google Scholar 

  28. G. Yang and W. Yuan, “The influence of ultrasonic vibration-assisted processing on mode-i fracture toughness of CFRP-bonded joints,” Int. J. Adhes. Adhes. 104, 102742 (2021).

    Article  CAS  Google Scholar 

  29. J. Holtmannspotter, J. V. Czarnecki, and H. J. Gudladt, “The use of power ultrasound energy to support interface formation for structural adhesive bonding,” Int. J. Adhes. Adhes. 30, 130–138 (2010).

    Article  Google Scholar 

  30. V. Prikhodko et al., “Improvement of operational properties of parts permanent joints with ultrasound technologies use,” J. Phys.: Conf. Ser. 1353, 012081 (2019).

    CAS  Google Scholar 

  31. S. K. Sundukov, “The Influence of Ultrasonic Vibrations on the Processes of Obtaining Permanent Connections,” in Technological Support and Improving the Quality of Mechanical Engineering and Aerospace Products, Ed. by D. I. Petreshin (Bryansk Gos. Tekh. Univ., Bryansk, 2022), pp. 199–203.

    Google Scholar 

Download references

Funding

The study was supported by the Russian Scientific Foundation, grant no. 21-79-00185, https://rscf.ru/project/21-79-0018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sundukov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by K. Gumerov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundukov, S.K. Ultrasonic Technologies in Producing Adhesive Joints: A Review. Polym. Sci. Ser. D 16, 868–874 (2023). https://doi.org/10.1134/S1995421223040342

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421223040342

Keywords:

Navigation