Skip to main content
Log in

Establishment and characterization of NCC-PMP2-C1: a novel patient-derived cell line of pseudomyxoma peritonei with signet ring cells

  • Cell Line
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Pseudomyxoma peritonei (PMP) is a rare phenomenon, characterized by accumulation of mucus in the abdominal cavity due to a mucinous neoplasm. Histologically, PMP is divided into three prognostic classes, namely low-grade mucinous carcinoma peritonei (LGMCP), high-grade mucinous carcinoma peritonei (HGMCP), and high-grade mucinous carcinoma peritonei with signet ring cells (HGMCP-S); HGMCP-S exhibits the worst prognosis. Complete cytoreductive surgery and hyperthermic intraperitoneal chemotherapy have been established as the standard therapy for PMP. However, 50% of patients with PMP experience a recurrence, and 30–40% are unable to receive the standard treatment due to invasive diseases. Therefore, novel therapies are required for their treatment. Although patient-derived cell lines are important tools for basic and pre-clinical research, PMP cell lines derived from patients with HGMCP-S have never been reported. Thus, we established a novel PMP cell line NCC-PMP2-C1, using surgically resected tumor tissue from a patient with HGMCP-S. NCC-PMP2-C1 cells were maintained for more than five months and passaged 30 times under culture conditions. NCC-PMP2-C1 cells exhibited multiple deletions and somatic mutations, slow growth, histological features, and dissemination of tumor cells in nude mice. Screening for the anti-proliferative effects of anti-cancer drugs on cells revealed that bortezomib, mubritinib, and romidepsin had a significant response against NCC-PMP2-C1 cells. Thus, the NCC-PMP2-C1 cell line is the first PMP cell line harboring signet ring cells and will be a valuable resource for basic and preclinical studies of HGMCP-S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data of this cell line is not applicable.

References

  1. Moran BJ, Cecil TD. The etiology, clinical presentation, and management of pseudomyxoma peritonei. Surg Oncol Clin N Am. 2003;12(3):585–603. https://doi.org/10.1016/s1055-3207(03)00026-7.

    Article  PubMed  Google Scholar 

  2. Prayson RA, Hart WR, Petras RE. Pseudomyxoma peritonei. A clinicopathologic study of 19 cases with emphasis on site of origin and nature of associated ovarian tumors. Am J Surg Pathol. 1994;18(6):591–603.

    CAS  PubMed  Google Scholar 

  3. de Bree E, Witkamp A, Van De Vijver M, Zoetmulde F. Unusual origins of Pseudomyxoma peritonei. J Surg Oncol. 2000;75(4):270–4.

    Article  PubMed  Google Scholar 

  4. Ronnett BM, Zahn CM, Kurman RJ, Kass ME, Sugarbaker PH, Shmookler BM. Disseminated peritoneal adenomucinosis and peritoneal mucinous carcinomatosis. A clinicopathologic analysis of 109 cases with emphasis on distinguishing pathologic features, site of origin, prognosis, and relationship to “pseudomyxoma peritonei.” Am J Surg Pathol. 1995;19(12):1390–408.

    Article  CAS  PubMed  Google Scholar 

  5. Costa MJ. Pseudomyxoma peritonei. Histologic predictors of patient survival. Arch Pathol Lab Med. 1994;118(12):1215–9.

    CAS  PubMed  Google Scholar 

  6. Bento C, Percy MJ, Gardie B, Maia TM, van Wijk R, Perrotta S, et al. Genetic basis of congenital erythrocytosis: mutation update and online databases. Hum Mutat. 2014;35(1):15–26. https://doi.org/10.1002/humu.22448.

    Article  CAS  PubMed  Google Scholar 

  7. Chejfec G, Rieker WJ, Jablokow VR, Gould VE. Pseudomyxoma peritonei associated with colloid carcinoma of the pancreas. Gastroenterology. 1986;90(1):202–5.

    Article  CAS  PubMed  Google Scholar 

  8. Smeenk RM, van Velthuysen ML, Verwaal VJ, Zoetmulder FA. Appendiceal neoplasms and pseudomyxoma peritonei: a population based study. Eur J Surg Oncol. 2008;34(2):196–201. https://doi.org/10.1016/j.ejso.2007.04.002.

    Article  CAS  PubMed  Google Scholar 

  9. Sugarbaker PH. Pseudomyxoma peritonei. A cancer whose biology is characterized by a redistribution phenomenon. Ann Surg. 1994;219(2):109–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carr NJ, Cecil TD, Mohamed F, Sobin LH, Sugarbaker PH, Gonzalez-Moreno S, et al. A consensus for classification and pathologic reporting of pseudomyxoma peritonei and associated appendiceal neoplasia: the results of the Peritoneal Surface Oncology Group International (PSOGI) Modified Delphi Process. Am J Surg Pathol. 2016;40(1):14–26. https://doi.org/10.1097/PAS.0000000000000535.

    Article  PubMed  Google Scholar 

  11. Davison JM, Choudry HA, Pingpank JF, Ahrendt SA, Holtzman MP, Zureikat AH, et al. Clinicopathologic and molecular analysis of disseminated appendiceal mucinous neoplasms: identification of factors predicting survival and proposed criteria for a three-tiered assessment of tumor grade. Mod Pathol. 2014;27(11):1521–39. https://doi.org/10.1038/modpathol.2014.37.

    Article  PubMed  Google Scholar 

  12. Shetty S, Natarajan B, Thomas P, Govindarajan V, Sharma P, Loggie B. Proposed classification of pseudomyxoma peritonei: influence of signet ring cells on survival. Am Surg. 2013;79(11):1171–6.

    Article  PubMed  Google Scholar 

  13. Sirintrapun SJ, Blackham AU, Russell G, Votanopoulos K, Stewart JH, Shen P, et al. Significance of signet ring cells in high-grade mucinous adenocarcinoma of the peritoneum from appendiceal origin. Hum Pathol. 2014;45(8):1597–604. https://doi.org/10.1016/j.humpath.2014.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baratti D, Kusamura S, Milione M, Bruno F, Guaglio M, Deraco M. Validation of the recent PSOGI pathological classification of pseudomyxoma peritonei in a single-center series of 265 patients treated by cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2018;25(2):404–13. https://doi.org/10.1245/s10434-017-6252-1.

    Article  PubMed  Google Scholar 

  15. Ishida M, Mizumoto A, Yonemura Y, Kashu I, Takemura S, Tsuta K. Prognostic significance of the presence of epithelial cell clusters in the ascites of patients with Pseudomyxoma peritonei. Diagn Cytopathol. 2019;47(10):1024–7. https://doi.org/10.1002/dc.24262.

    Article  PubMed  Google Scholar 

  16. Sugarbaker PH, Chang D. Results of treatment of 385 patients with peritoneal surface spread of appendiceal malignancy. Ann Surg Oncol. 1999;6(8):727–31.

    Article  CAS  PubMed  Google Scholar 

  17. Wertheim I, Fleischhacker D, McLachlin CM, Rice LW, Berkowitz RS, Goff BA. Pseudomyxoma peritonei: a review of 23 cases. Obstet Gynecol. 1994;84(1):17–21.

    CAS  PubMed  Google Scholar 

  18. Miner TJ, Shia J, Jaques DP, Klimstra DS, Brennan MF, Coit DG. Long-term survival following treatment of Pseudomyxoma peritonei: an analysis of surgical therapy. Ann Surg. 2005;241(2):300–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010;10(4):241–53. https://doi.org/10.1038/nrc2820.

    Article  CAS  PubMed  Google Scholar 

  20. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. https://doi.org/10.1038/nature11003.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, et al. A landscape of pharmacogenomic interactions in cancer. Cell. 2016;166(3):740–54. https://doi.org/10.1016/j.cell.2016.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Teicher BA, Polley E, Kunkel M, Evans D, Silvers T, Delosh R, et al. Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression. Mol Cancer Ther. 2015;14(11):2452–62. https://doi.org/10.1158/1535-7163.mct-15-0074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hattori E, Kondo T. Current status of cancer proteogenomics: a brief introduction. J Electrophoresis. 2019;63(1):33–7.

    Article  CAS  Google Scholar 

  24. Cao PD, Cheung WK, Nguyen DX. Cell lineage specification in tumor progression and metastasis. Discov Med. 2011;12(65):329–40.

    PubMed  Google Scholar 

  25. Subbiah V, Puzanov I, Blay JY, Chau I, Lockhart AC, Raje NS, et al. Pan-cancer efficacy of vemurafenib in BRAF (V600)-mutant non-melanoma cancers. Cancer Discov. 2020;10(5):657–63. https://doi.org/10.1158/2159-8290.cd-19-1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wabitsch M, Bruderlein S, Melzner I, Braun M, Mechtersheimer G, Moller P. LiSa-2, a novel human liposarcoma cell line with a high capacity for terminal adipose differentiation. Int J Cancer. 2000;88(6):889–94. https://doi.org/10.1002/1097-0215(20001215)88:6%3c889::aid-ijc8%3e3.0.co;2-n.

    Article  CAS  PubMed  Google Scholar 

  27. Bairoch A. The Cellosaurus, a cell-Line knowledge resource. J Biomol Tech. 2018;29(2):25–38. https://doi.org/10.7171/jbt.18-2902-002.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Noguchi R, Yoshimatsu Y, Sin Y, Ono T, Tsuchiya R, Yoshida H, et al. Establishment and characterization of NCC-PMP1-C1: a novel patient-derived cell line of metastatic Pseudomyxoma peritonei. J Pers Med. 2022. https://doi.org/10.3390/jpm12020258.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yoshimatsu Y, Noguchi R, Tsuchiya R, Kito F, Sei A, Sugaya J, et al. Establishment and characterization of NCC-CDS2-C1: a novel patient-derived cell line of CIC-DUX4 sarcoma. Hum Cell. 2020;33(2):427–36. https://doi.org/10.1007/s13577-019-00312-x.

    Article  PubMed  Google Scholar 

  30. Sunami K, Ichikawa H, Kubo T, Kato M, Fujiwara Y, Shimomura A, et al. Feasibility and utility of a panel testing for 114 cancer-associated genes in a clinical setting: a hospital-based study. Cancer Sci. 2019;110(4):1480–90. https://doi.org/10.1111/cas.13969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Willenbrock H, Fridlyand J. A comparison study: applying segmentation to array CGH data for downstream analyses. Bioinformatics. 2005;21(22):4084–91. https://doi.org/10.1093/bioinformatics/bti677.

    Article  CAS  PubMed  Google Scholar 

  32. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5(4):557–72. https://doi.org/10.1093/biostatistics/kxh008.

    Article  PubMed  Google Scholar 

  33. Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics. 2007;23(6):657–63. https://doi.org/10.1093/bioinformatics/btl646.

    Article  CAS  PubMed  Google Scholar 

  34. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):D941–7. https://doi.org/10.1093/nar/gky1015.

    Article  CAS  PubMed  Google Scholar 

  35. Capes-Davis A, Reid YA, Kline MC, Storts DR, Strauss E, Dirks WG, et al. Match criteria for human cell line authentication: where do we draw the line? Int J Cancer. 2013;132(11):2510–9. https://doi.org/10.1002/ijc.27931.

    Article  CAS  PubMed  Google Scholar 

  36. Roberts DL, O’Dwyer ST, Stern PL, Renehan AG. Global gene expression in Pseudomyxoma peritonei, with parallel development of two immortalized cell lines. Oncotarget. 2015;6(13):10786–800.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koh J, Nam SK, Roh H, Kim J, Lee BC, Kim JW, et al. Somatic mutational profiles of stage II and III gastric cancer according to tumor microenvironment immune type. Genes Chromosomes Cancer. 2019;58(1):12–22. https://doi.org/10.1002/gcc.22683.

    Article  CAS  PubMed  Google Scholar 

  38. Cajuso T, Hanninen UA, Kondelin J, Gylfe AE, Tanskanen T, Katainen R, et al. Exome sequencing reveals frequent inactivating mutations in ARID1A, ARID1B, ARID2 and ARID4A in microsatellite unstable colorectal cancer. Int J Cancer. 2014;135(3):611–23. https://doi.org/10.1002/ijc.28705.

    Article  CAS  PubMed  Google Scholar 

  39. Mateo J, Seed G, Bertan C, Rescigno P, Dolling D, Figueiredo I, et al. Genomics of lethal prostate cancer at diagnosis and castration resistance. J Clin Invest. 2020;130(4):1743–51. https://doi.org/10.1172/JCI132031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C, et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the Hippo pathway. Cancer Cell. 2018. https://doi.org/10.1016/j.ccell.2018.11.006.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Griffith OL, Spies NC, Anurag M, Griffith M, Luo J, Tu D, et al. The prognostic effects of somatic mutations in ER-positive breast cancer. Nat Commun. 2018;9(1):3476. https://doi.org/10.1038/s41467-018-05914-x.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014;4(1):94–109. https://doi.org/10.1158/2159-8290.CD-13-0617.

    Article  CAS  PubMed  Google Scholar 

  43. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23(6):703–13. https://doi.org/10.1038/nm.4333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nummela P, Saarinen L, Thiel A, Jarvinen P, Lehtonen R, Lepisto A, et al. Genomic profile of Pseudomyxoma peritonei analyzed using next-generation sequencing and immunohistochemistry. Int J Cancer. 2015;136(5):E282–9. https://doi.org/10.1002/ijc.29245.

    Article  CAS  PubMed  Google Scholar 

  45. Shetty S, Thomas P, Ramanan B, Sharma P, Govindarajan V, Loggie B. Kras mutations and p53 overexpression in Pseudomyxoma peritonei: association with phenotype and prognosis. J Surg Res. 2013;180(1):97–103. https://doi.org/10.1016/j.jss.2012.10.053.

    Article  CAS  PubMed  Google Scholar 

  46. Furumai R, Matsuyama A, Kobashi N, Lee KH, Nishiyama M, Nakajima H, et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 2002;62(17):4916–21.

    CAS  PubMed  Google Scholar 

  47. VanderMolen KM, McCulloch W, Pearce CJ, Oberlies NH. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J Antibiot (Tokyo). 2011;64(8):525–31. https://doi.org/10.1038/ja.2011.35.

    Article  CAS  PubMed  Google Scholar 

  48. Mantzourani C, Gkikas D, Kokotos A, Nummela P, Theodoropoulou MA, Wu KC, et al. Synthesis of benzoxazole-based vorinostat analogs and their antiproliferative activity. Bioorg Chem. 2021;114: 105132. https://doi.org/10.1016/j.bioorg.2021.105132.

    Article  CAS  PubMed  Google Scholar 

  49. Boccadoro M, Morgan G, Cavenagh J. Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int. 2005;5(1):18. https://doi.org/10.1186/1475-2867-5-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.jp) for English language editing and constructive comments on the manuscript.

Funding

This research was supported by JSPS KAKENHI (Grant Number 21K08743).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, R.N. and T.K.; methodology, R.N., Y.Y., and T.K.; software, R.N.; validation, R.N., Y.S., and Y.Y.; formal analysis, Y.S, R.T., T.O. and H.Y.; investigation, R.N.; resources, T.K. and Y.Y.; data curation, R.N.; writing—original draft preparation, R.N. and T.K.; writing—review and editing, T.K.; visualization, R.N.; supervision, R.N., Y.Y., T.K., and T.K.; project administration, R.N. and T.K.; funding acquisition, R.N. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Tadashi Kondo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

The use of clinical materials for this study was approved by the ethical committees of the National Cancer Center (2018–371) and Kusatsu General Hospital. Informed consent was obtained from all donors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noguchi, R., Yoshimatsu, Y., Sin, Y. et al. Establishment and characterization of NCC-PMP2-C1: a novel patient-derived cell line of pseudomyxoma peritonei with signet ring cells. Human Cell 37, 511–522 (2024). https://doi.org/10.1007/s13577-023-01015-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-01015-0

Keywords

Navigation