Skip to main content
Log in

Method of Potential Operators for Interaction Problems on Unbounded Hypersurfaces in \(\mathbb{R}^{n}\) for Dirac Operators

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the \(L_{p}\)-theory of interaction problems associated with Dirac operators with singular potentials of the form \(D=\mathfrak{D}_{m,\Phi }+\Gamma\delta_{\Sigma}\) where

$$\mathfrak{D}_{m,\Phi}=\sum_{j=1}^{n}\alpha_{j}(-i\partial_{x_{j}} )+m\alpha_{n+1}+\Phi\mathbb{I}_{N}$$

is a Dirac operator on \(\mathbb{R}^{n}\), \(\alpha_{1},\alpha_{2},\dots,\alpha _{n},\alpha_{n+1}\) are Dirac matrices, \(m\) is a variable mass, \(\Phi \mathbb{I}_{N}\) electrostatic potential, \(\Gamma\delta_{\Sigma}\) is a singular potential with support on smooth hypersurfaces \(\Sigma \subset\mathbb{R}^{n}.\)

We associate with the formal Dirac operator \(D\) the interaction (transmission) problem on \(\mathbb{R}^{n}\diagdown\Sigma\) with the interaction conditions on \(\Sigma\). Applying the method of potential operators we reduce the interaction problem to a pseudodifferential equation on \(\Sigma.\) The main aim of the paper is the study of Fredholm property of these pseudodifferential operators on unbounded hypersurfaces \(\Sigma\) and applications to the study of Fredholmness of interaction problems on unbounded smooth hypersurfaces in Sobolev and Besov spaces.

DOI 10.1134/S1061920823040167

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Agranovich, Y. V. Egorov, and M. A. Shubin, “Elliptic Boundary Problems”, Partial Differential Equations, IX, (2010).

    Google Scholar 

  2. M. S. Agranovich, “Spectral Properties of Potential Type Operators for a Class of Strongly Elliptic Systems on Smooth and Lipschitz Surfaces”, Trudy Moscow Mat. Ob., 62 (2001), 5–55; Trans. Moscow Math.Soc., (2001), 1–47.

    Google Scholar 

  3. N. Arrizabalaga, A. Mas, and L. Vega, “Shell Interactions for Dirac Operators”, J. Math. Pures Appl., 102:4 (2014), 617–639.

    Article  MathSciNet  Google Scholar 

  4. R. Beals, “Characterization of Pseudodifferemtial Operators and Applications”, Duke Math. Journal, 44:1 (1977), 45–57.

    Article  MathSciNet  Google Scholar 

  5. R. D. Benguria, S. Fournais, E. Stockmeyer, and Van Den H. Bosch, “Self-Adjointness of Two-Dimensional Dirac Operators on Domains”, Ann. Henri Poincar, 18:4 (2017), 1371–1383.

    Article  ADS  MathSciNet  Google Scholar 

  6. R. D. Benguria, S. Fournais, E. Stockmeyer, and Van Den H. Bosch, “Spectral Gaps of Dirac Operators Describing Graphene Quantum Dots”, Math. Phys. Anal. Geom., 20:2 (2017).

    Article  MathSciNet  Google Scholar 

  7. J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin-Heidelberg-New York, 1976.

    Book  Google Scholar 

  8. A. V. Brenner and E. M. Shargorodsky, “Boundary Value Problems for Elliptic Pseudodifferential Operators”, in the book: M. S. Agranovich. Yu. V. Egorov, M.A. Shubin (Eds.), Partial Differential Equations IX, Elliptic Boundary Value Problems, Springer, Berlin, Heidelberg, New York, 1996, 145–216.

    Google Scholar 

  9. J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “On the Spectral Properties of Dirac Operators with Electrostatic \(\delta\)-Shell Interactions”, J. Math.Pures Appl., 111 (2018), 47–78.

    Article  MathSciNet  Google Scholar 

  10. J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “On Dirac Operators in \(\mathbb{R}^{3}\) with Electrostatic and Lorentz Scalar \(\delta \)-Shell Interactions”, Quantum Stud.: Math. Found., (2019).

    MathSciNet  Google Scholar 

  11. J. Behrndt, M. Holzmann, T. Ourmières-Bonafos, and K. Pankrashkin, “Two-Dimensional Dirac Operators with Singular Interactions Supported on Closed Curves”, J. Funct. Anal., 279:8 (2020), 108700.

    Article  MathSciNet  Google Scholar 

  12. J. Behrndt, M. Holzmann, Ch. Stelzer, and G. Stenzel, arXiv:2211.05191 [math.SP], (2022).

  13. J. Behrndt, M. Holzman, and M. Tusek, arXiv:2208.12761v1 [math-ph], (2022).

  14. B. Benhellal,, arXiv:2102.10207 [math.SP], (2021).

  15. B. Benhellal and K. Pankrashkin, arXiv:2211.10264 [math.SP],.

  16. B. Cassano, V. Lotoreichik, A. Mas, and M. Tusek, arXiv:2102.09988v1 [math.AP], (2021).

  17. C. Carvalho, V. Nistor, and Yu Qiao, Fredholm Conditions on Non-Compact Manifolds: Theory and Examples. Operator Theory, Operator Algebras, and Matrix Theory, Lisbon, Portugal, 2016.

    Google Scholar 

  18. R. Delanghe, F. Sommen, and V. Soucek, Clifford Algebra and Spinor-Valued Functions, A Function Theory for the Dirac Operator, Springer-Science-Busines-Media, B.V., 1992.

    Book  Google Scholar 

  19. J. Franke, “Besov–Triebel–Lizorkin Spaces and Boundary Value Problems”, in: Seminar Analysis (Berlin 1984/85), (1985), 89–104.

    MathSciNet  Google Scholar 

  20. M. Holzmann, “A Note on the Three Dimensional Dirac Operator with Zigzag Type Boundary Conditions”, Complex Analysis and Operator Theory, 15:47 (2021).

    ADS  MathSciNet  Google Scholar 

  21. G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Berlin, Heidelberg, Springer, 2008.

    Book  Google Scholar 

  22. D. L. Colton and R. Kress, Integral Equation Method in Scattering Theory, Philadel… a, SIAM, 2013.

    Book  Google Scholar 

  23. H. Kumano-go, Pseudodifferential Operators, MIT Presss, Cambrige, 1981.

    Google Scholar 

  24. A. Mas and F. Pizzichillo, “Klein’s Paradox and the Relativistic \(\delta-\)Shell Interaction in \(\mathbb{R}^{3}\)”, Anal. PDE, 11:3 (2018), 705–744.

    Article  MathSciNet  Google Scholar 

  25. D. Mitrea, M. Mitrea, and M. Taylor, “Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds”, Mem. Amer. Math. Soc., 713 (2001).

    Article  MathSciNet  Google Scholar 

  26. I. Mitrea, M. Mitrea, and M. Taylor, “Cauchy Integrals, Calderón Projectors, and Toeplitz Operators on Uniformly Rectifiable Domains”, Advances in Mathematics, 268 (2015), 666–715.

    Article  MathSciNet  Google Scholar 

  27. J. Mehringer and E. Stockmeyer, “Confinement–Deconfinement Transitions for Two-Dimensional Dirac Particles”, J. Funct. Anal., 266 (2014), 2225–2250.

    Article  MathSciNet  Google Scholar 

  28. J-C. Nédélec, Acoustic and Electromagnetic Equations, Applied Mathematical Sciences, New York, Springer Velag, 2001.

    Book  Google Scholar 

  29. A. Moroianu, Th. Ourmierès-Bonafos-Bonafos, and K. Pankrashkin, “Dirac Operators on Surfaces Large Mass Limits”, J. Math. Pures et Appliquees, 102:4 (2014), 617–639.

    MathSciNet  Google Scholar 

  30. F. Pizzichillo and H. Van Den Bosch, Preprint arXiv:1902.05010 (2019),.

  31. Th. Ourmierès-Bonafos-Bonafos and L. Vega, “A Strategy for Self-Adjointnessof Dirac Operators: Applications to the MIT BAG Model and Shell Interactions”, Publ. Mat., 62 (2018), 397–437.

    Article  MathSciNet  Google Scholar 

  32. L. Päivärinta, “Pseudodifferential Operators in Hardy-Triebel Spaces”, Z. Anal. Anw., 2 (1983), 235–242.

    Article  MathSciNet  Google Scholar 

  33. Th. Ourmierès-Bonafos-Bonafos and F. Pizzichlllo, arXiv:1902.03901v1 [math-ph], (2019).

  34. V. S. Rabinovich, “Pseudodifferential Operators on a Class of Noncompact Manifolds”, Math. USSR Sb., 18 (1973), 45–59.

    Article  Google Scholar 

  35. V. S. Rabinovich, S. Roch, and B. Silbermann, “Limit Operators and their Applications in Operator Theory”, In ser.Operator Theory: Advances and Applications, 150 (2004).

    MathSciNet  Google Scholar 

  36. V. S. Rabinovich, “Transmission Problems for Conical and Quasi-Conical at Infinity Domains”, Applicable Analysis, 94:10 (2015), 2077–2094.

    Article  MathSciNet  Google Scholar 

  37. V. S. Rabinovich, “The Fredholm Property and Essential Spectra of Pseudodifferential Operators on Non-Compact Manifolds and Limit Operators”, Contemporary Mathematics, 653 (2015).

    MathSciNet  Google Scholar 

  38. V. S. Rabinovich, “\(L_{p}\)-Theory of Boundary Integral Operators for Domains with Unbounded Smooth Boundary”, Georgian Mathematical Journal, 23:4 (2016).

    Article  Google Scholar 

  39. V. S. Rabinovich, “Fredholm Property and Essential Spectrum of \(3-N\) Dirac Operators with Regular and Singular Potentials”, Complex Variables and Elliptic equations, (2020).

    Google Scholar 

  40. V. S. Rabinovich, “Two-Dimensional Dirac Operators with Interactions on Unbounded Smooth Curves”, Russ. J. Math. Phys., 28:4 (2021), 524–542.

    Article  MathSciNet  Google Scholar 

  41. V. S. Rabinovich, “Dirac Operators with Delta-Interactions on Smooth Hypersurfaces in \(\mathbb{R}^{n}\)”, J. Fourier Analysis and Applications, 28:20 (2022).

    MathSciNet  Google Scholar 

  42. V. S. Rabinovich, “The Method of Potential Operators for Anisotropic Helmholtz Operators on Domains with Smooth Unbounded Boundaries”, Operator Theory: Advances and Applications. Recent Trends in Operator Theory and Partial Differential Equations–Operator Theory: Advances and Applications, , 229–256.

    Google Scholar 

  43. M. Sugimoto, “Pseudo-Differential Operators on Besov Spaces”, Tsukuba J. Math, 12:1 (1988).

    Article  MathSciNet  Google Scholar 

  44. E. Shargorodsky, “\(L_{p}\)-Analogue of the Vishik-Eskin Theory”, Memoirs on Differential Equations and Mathematical Physics, 2 (1994), 47–145.

    Google Scholar 

  45. M. Shubin, Pseudodifferential Operators and Spectral Theory, Springer, Berlin, Heidelberg, New York, 2001.

    Book  Google Scholar 

  46. M. E. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton, New Jersey, 1981.

    Book  Google Scholar 

  47. M. E. Taylor, “Tools for PDE, Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials”, Math. Surveys and Monographs, 81 (2000).

    Google Scholar 

  48. H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Rabinovich.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabinovich, V.S. Method of Potential Operators for Interaction Problems on Unbounded Hypersurfaces in \(\mathbb{R}^{n}\) for Dirac Operators. Russ. J. Math. Phys. 30, 674–690 (2023). https://doi.org/10.1134/S1061920823040167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920823040167

Navigation