Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 26, 2023

Characterization of the bark of Protium tenuifolium Engl. from the Amazonian biome as a source of natural antioxidants

  • Laise de Jesus dos Santos EMAIL logo , Elesandra da Silva Araujo ORCID logo , Mário Sérgio Lorenço ORCID logo , Bianca Bueno Rosário , Sabrina Benmuyal Vieira , Agust Sales , Marco Antonio Siviero , Luiz Eduardo de Lima Melo , Graciene da Silva Mota ORCID logo , Gabriela Aguiar Campolina and Fabio Akira Mori
From the journal Holzforschung

Abstract

The bark anatomy was analysed, as was the overall chemical composition (extractives, lignin, suberin, ash and polysaccharides), and a quantitative elemental analysis was performed of the bark and two tannin extracts (extracted with water only and with a mixture of water and Na2SO3). The phenolic composition and antioxidant activity of the bark extracts were quantified. The results indicated that the bark is composed of conductive phloem, nonconductive phloem, rhytidome, crystals and secretory cells. The average chemical composition was 15.9 % extractives, 35.3 % total lignin, 1.9 % suberin, 15.4 % ash and 31.5 % polysaccharides. The condensed tannin yield in the extract obtained with water alone was 5.1 %, and that in the treatment with water and Na2SO3 was 8.1 %. The ethanol-water extract had a high phenolic content (112.6 mg GAE g−1 extract). The bark extract showed strong antioxidant activity, reaching 83.5 % inhibition of DPPH free radicals, which was higher than the value of 75.0 % for the commercial antioxidant BHT at the same concentration. These results demonstrate that Protium tenuifolium is a potential natural Amazonian source of phenolic compounds and antioxidants and can be used for medicinal purposes and the production of various sustainable products, such as cosmetics.


Corresponding author: Laise de Jesus dos Santos, Department of Forest Science, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil, E-mail:

Funding source: Brazilian Federal Agency for Support and Evaluation of Post-graduate Education (CAPES, Funding Code 001).

Acknowledgments

The authors thank the National Council for Scientific and Technological Development – CNPq, Support Foundation of Minas Gerais (FAPEMIG) and the Arboris Business Group for the support in collecting the bark in the field.

  1. Research ethics: Not applicable.

  2. Author contributions: The author(s) have (has) accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author(s) state(s) no conflict of interest.

  4. Research funding: Brazilian Federal Agency for Support and Evaluation of Post-graduate Education (CAPES, Funding Code 001).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

Abdalla, S., Pizzi, A., Ayed, N., Charrier, F., Charrier, B., Bahabri, F., and Ganash, A. (2014). MALDI-TOF analysis of Aleppo pine (Pinus halepensis) bark tannin. Bioresources 9: 3396–3406, https://doi.org/10.15376/biores.9.2.3396-3406.Search in Google Scholar

Amparo, T.R., Djeujo, F.M., Silva, D.S., Seibert, J.B., Rodrigues, I.V., Santos, O.D.H., Brandão, G.C., Vieira, P.M.A., and Froldi, G. (2021). New potential use of Protium spruceanum in hyperglycemia: α-glucosidase inhibition and protection against oxidative stress. J. Braz. Chem. Soc. 32: 1988–1996, https://doi.org/10.21577/0103-5053.20210090.Search in Google Scholar

Angyalossy, V., Pace, M.R., Evert, R.F., Marcati, C.R., Oskolski, A.A., Terrazas, T., Kotina, E., Lens, F., Mazzoni-Viveiros, S.C., Angeles, G., et al.. (2016). IAWA list of microscopic bark features. IAWA J. 37: 517–615, https://doi.org/10.1163/22941932-20160151.Search in Google Scholar

Araujo, E.S., Mota, G.S., Lorenço, M.S., Zidanes, U.L., Silva, L.R., Silva, E.P., Ferreira, V.R.F., Cardoso, M.G., and Mori, F.A. (2020). Characterisation and valorisation of the bark of Myrcia eximia DC. trees from the Amazon rainforest as a source of phenolic compounds. Holzforschung 74: 989–998, https://doi.org/10.1515/hf-2019-0294.Search in Google Scholar

Araujo, E.S., Lorenço, M.S., Zidanes, U.L., Sousa, T.B., Mota, G.S., Reis, V.O., Silva, M.G., and Mori, F.A. (2021a). Quantification of the bark Myrcia eximia DC tannins from the Amazon rainforest and its application in the formulation of natural adhesives for wood. J. Clean. Prod. 280, https://doi.org/10.1016/j.jclepro.2020.124324.Search in Google Scholar

Araujo, F.F., Farias, D.P., Neri-Numa, I.A., and Pastore, G.M. (2021b). Polyphenols and their applications: an approach in food chemistry and innovation potential. Food Chem. 338, https://doi.org/10.1016/j.foodchem.2020.127535.Search in Google Scholar PubMed

Badhani, B., Sharma, N., and Kakka, R. (2015). Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 5: 27540–27557, https://doi.org/10.1039/c5ra01911g.Search in Google Scholar

Bandeira, P.N., Fonseca, A.M., Costa, S.M.O., Lins, M.U.D.S., Pessoa, O.D.L., Monte, F.J.Q., Nogueira, N.A.P., and Lemosa, T.L.G. (2005). Antimicrobial and antioxidant activities of the essential oil of resin of Protium heptaphyllum. Nat. Prod. Commun. 1, https://doi.org/10.1177/1934578x0600100207.Search in Google Scholar

Banerjee, G. and Chattopadhyay, P. (2018). Vanillin biotechnology: the perspectives and future. J. Sci. Food Agric. 99: 499–506, https://doi.org/10.1002/jsfa.9303.Search in Google Scholar PubMed

Baptista, I., Miranda, I., Quilhó, T., Gominho, J., and Pereira, H. (2013). Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Ind. Crop. Prod. 50: 166–175, https://doi.org/10.1016/j.indcrop.2013.07.004.Search in Google Scholar

Bello, A., Virtanen, V., Salminen, J.P., and Leiviska, T. (2020). Aminomethylation of spruce tannins and their application as coagulants for water clarification. Sep. Purif. Technol. 242: 116765, https://doi.org/10.1016/j.seppur.2020.116765.Search in Google Scholar

Bhadange, Y.A., Saharan, V.K., Sonawane, S.H., and Boczkaj, G. (2022). Intensification of catechin extraction from the bark of Syzygium cumini using ultrasonication: optimization, characterization, degradation analysis and kinetic studies. Chem. Eng. Process. 181, https://doi.org/10.1016/j.cep.2022.109147.Search in Google Scholar

Botterweck, A., Verhagen, H., Goldbohm, R., Kleinians, J., and Brandt, P.A.V.D. (2000). Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in The Netherlands Cohort Study. Food Chem. Toxicol. 38: 599–605, https://doi.org/10.1016/S0278-6915(00)00042-9.Search in Google Scholar

Boz, H. (2015). p-Coumaric acid in cereals: presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol. 50: 2323–2328, https://doi.org/10.1111/ijfs.12898.Search in Google Scholar

Carmo, J., F., Miranda, I., Quilhó, T., Sousa, V.B., Cardoso, S., Carvalho, A.M., Fábio, H.D.J.C., Latorraca, J.V.F, and Pereira, H. (2016a). Copaifera langsdorffii bark as a source of chemicals: structural and chemical characterization. J. Wood Chem. Technol.: 1532–2319, https://doi.org/10.1080/02773813.2016.1140208.Search in Google Scholar

Carmo, J.F., Miranda, I., Quilhó, T., Sousa, V.B., Carmo, F.H.D.J., Latorraca, J.V.F., and Pereira, H. (2016b). Chemical and structural characterization of the bark of Albizia niopoides trees from the Amazon. Wood Sci. Technol. 50: 677–692, https://doi.org/10.1007/s00226-016-0807-3.Search in Google Scholar

Carmo, J.F., Miranda, I., Quilhó, T., Carvalho, A.M., Carmo, F.H.D.J., Latorraca, J.V.F., and Pereira, H. (2016c). Characterization of the bark of the Brazilian hardwood Goupia glabra in terms of its valorization. BioResources 11: 4794–4807, https://doi.org/10.15376/biores.11.2.4794-4807.Search in Google Scholar

Carocho, M., Morales, P., and Ferreira, I.C.F.R. (2018). Antioxidants: reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 71: 107–120, https://doi.org/10.1016/j.tifs.2017.11.008.Search in Google Scholar

Chen, X., Li, J., Xi, X., Pizzi, A., Zhou, X., Fredon, E., Du, G., and Gerardin, C. (2020). Condensed tannin-glucose-based NIPU bio-foams of improved fire retardancy. Polym. Degrad. Stab. 175, https://doi.org/10.1016/j.polymdegradstab.2020.109121.Search in Google Scholar

Chio, C., Sain, M., and Qin, W. (2019). Lignin utilization: a review of lignin depolymerization from various aspects. Renewable Sustainable Energy Rev. 107: 232–249, https://doi.org/10.1016/j.rser.2019.03.008.Search in Google Scholar

Chupin, L., Motillon, C., Bouhtoury, F.C., Pizzi, A., and Charrier, B. (2013). Characterisation of maritime pine (Pinus pinaster) bark tannins extracted under different conditions by spectroscopic methods, FTIR and HPLC. Ind. Crops Prod. 49: 897–903, https://doi.org/10.1016/j.indcrop.2013.06.045.Search in Google Scholar

Converti, A., Aliakbarian, B., Dominguez, J.M., Vázquez, G.B., and Perego, P. (2010). Microbial production of biovanillin. Braz. J. Microbiol. 41: 519–530, https://doi.org/10.1590/S1517-83822010000300001.Search in Google Scholar PubMed PubMed Central

Daly, D.C. (1989). Studies in neotropical Burseraceae II. Generic limits in neotropical protieae and canarieae. Brittonia 41: 17–27, https://doi.org/10.2307/2807583.Search in Google Scholar

Deineko, I.P. and Faustova, N.M. (2015). Element and group chemical composition of aspen bark and wood. Chem. Plant Raw Mater. 1: 51–62, https://doi.org/10.14258/jcprm.201501461.Search in Google Scholar

do Brasil, F. (2022). Protium tenuifolium, Available at: http://servicos.jbrj.gov.br (Accessed 21 March, 2022) Dec. 2021.Search in Google Scholar

Engin, A.B., Bukan, N., Kurukahvecioglu, O., Memis, L., and Engin, A. (2011). Effect of butylated hydroxytoluene (E321) pretreatment versus l-arginine on liver injury after sub-lethal dose of endotoxin administration. Environ. Toxicol. Pharmacol. 32: 457–464, https://doi.org/10.1016/j.etap.2011.08.014.Search in Google Scholar PubMed

Farias, K.S., Santos, T.S.N., Paiva, M.R.A.B., Almeida, S.M.L., Guedes, P.T., Viana, A.C.A., Favaro, S.P., Bueno, N., and Castilho, R. (2013). Antioxidant properties of species from the Brazilian cerrado by different assays. Rev. Bras. Plantas Med. 15: 4, https://doi.org/10.1590/S1516-05722013000400008.Search in Google Scholar

Ferreira, J.P.A., Miranda, I., Sousa, V.B., and Pereira, H. (2018). Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts. PLoS One 13: 1–18, https://doi.org/10.1371/journal.pone.0197135.Search in Google Scholar PubMed PubMed Central

Ferreira, R.G.S., Guilhon-Simplici, F., Yamaguchi, K.K.L., Lira, P.D., Machado, T.M., Ferreira, M.A.C., Veiga-Junior, V.F., and Lima, E.S. (2020). The selective obtaining of amyrins from Amazonian Protium oleoresins. Rev. Colomb. Cienc. Quím. Farm. 49: 482–497, https://doi.org/10.15446/rcciquifa.v49n2.89923.Search in Google Scholar

Fradinho, D.M., Pascoal Neto, C., Evtuguin, D., Jorge, F.C., Irle, M.A., Gil, M.H., and Jesus, J.P. (2002). Chemical characterisation of bark and of alkaline bark extracts from maritime pine grown in Portugal. Ind. Crops Prod. 16: 23–32, https://doi.org/10.1016/S0926-6690(02)00004-3.Search in Google Scholar

Franklin, G.L. (1945). Reparation of thin sections of synthetic resins and wood-resins composites, and a new macerating method for wood. Nature 155: 51, https://doi.org/10.1038/155051a0.Search in Google Scholar

Gominho, J., Costa, R., Lourenço, A., Quilhó, T., and Pereira, H. (2020). Eucalyptus globulus stumps bark: chemical and anatomical characterization under a valorisation perspective. Waste and Biomass Valorization 12: 1253–1265, https://doi.org/10.1007/s12649-020-01098-y.Search in Google Scholar

Harman-Ware, A., Sparks, S., Addison, B., and Kalluri, U. (2021). Importance of suberin biopolymer in plant function, contributions to soil organic carbon and in the production of bio-derived energy and materials. Biotechnol. Biofuels 14: 1–21, https://doi.org/10.1186/s13068-021-01892-3.Search in Google Scholar PubMed PubMed Central

Hoong, Y.B., Paridaha, M.T., Luqman, C.A., Koh, M.P., and Loh, Y. (2009). Fortification of sulfited tannin from the bark of Acacia mangium with phenoleformaldehyde for use as plywood adhesive. Ind. Crop. Prod. 30: 416–421, https://doi.org/10.1016/j.indcrop.2009.07.012.Search in Google Scholar

Jansone, Z., Muizniece, I., and Blumberga, D. (2017). Analysis of wood bark use opportunities. Energy Procedia 128: 268–274, https://doi.org/10.1016/j.egypro.2017.09.070.Search in Google Scholar

Kiliç, I. and Yesiloglu, Y. (2013). Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim. Acta, Part A 115: 719–724, https://doi.org/10.1016/j.saa.2013.06.110.Search in Google Scholar PubMed

Köppen, W. (1900). Versuch einer Klassifikation der Klimate, vorzugweise nach ihren Beziehungen zur Pflanzenwelt. Geogr. Z. 6: 657–679.Search in Google Scholar

Kornienko, J.S., Smirnova, I.S., Pugovkina, N.A., Ivanova, J.S., Shilina, M.A., Grinchuk, T.M., Shatrova, A.N., Aksenov, N.D., Zenin, V.V., Nikolsky, N.N., et al.. (2019). High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Sci. Rep. 9: 1296, https://doi.org/10.1038/s41598-018-37972-y.Search in Google Scholar PubMed PubMed Central

Kraus, J.E. and Arduin, M. (1997). Basic manual of methods in plant morphology. Editora da Universidade Federal Rural do Rio de Janeiro, Seropedica.Search in Google Scholar

Leite, C. and Pereira, H. (2017). Cork-containing barks: a review. Front. Mater. 3: 1–19, https://doi.org/10.3389/fmats.2016.00063.Search in Google Scholar

Li, D., Yi-xin, R., Guo, S., Luan, F., Liu, R., and Zeng, N. (2021). Ferulic acid: a review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 284, https://doi.org/10.1016/j.lfs.2021.119921.Search in Google Scholar PubMed

Lins, T.R.S., Braz, R.L., Silva, T.C., Araujo, E.C.G., Medeiros, J., and Reis, C.A. (2019). Tannin content of the bark and branch of Caatinga species. J. Exp. Agric. Int. 31: 1–8, https://doi.org/10.9734/jeai/2019/v31i130061.Search in Google Scholar

Lourenço, S.C., Moldão-Martins, M., and Alves, V.D. (2019). Antioxidants of natural plant origins: from sources to food industry applications. Molecules 22: 4132, https://doi.org/10.3390/molecules24224132.Search in Google Scholar PubMed PubMed Central

Mathur, M. and Kamal, R. (2012). Studies on trigonelline from Moringa oleifera and its in vitro regulation by feeding precursor in cell cultures. Rev. Bras. Farmacogn. 22, https://doi.org/10.1590/S0102-695X2012005000041.Search in Google Scholar

Medeiros, J.X., Calegari, L., Silva, G., Oliveira, E., and Pimenta, A. (2018). Measurement of tannic substances in forest species. Floresta e Ambiente 25: 1–8, https://doi.org/10.1590/2179-8087.058916.Search in Google Scholar

Mendonza, F., Pina, N., Brasílio, M., Guimarães, M., de Freitas, V., and Cruz, L. (2018). Extending the stability of red and blue colors of malvidin-3-glucoside-lipophilic derivatives in the presence of SDS micelles. Dyes Pigm. 151: 321–326, https://doi.org/10.1016/J.DYEPIG.2018.01.007.10.1016/j.dyepig.2018.01.007Search in Google Scholar

Menezes Filho, A.C.P., Cristofoli, M., Ventura, M.V.A., Taques, A.S., Alvez, I., and Castro, C.F.S. (2022). Óleo essencialdos pecíolos de Protium ovatum Engl. (Burseraceae) apresenta atividade bioativa e antifúngica? Braz. J. of Sci. 7: 26–36.10.14295/bjs.v1i7.151Search in Google Scholar

Metcalfe, C.R. and Chalk, L. (1950). Anatomy of the dicotyledons leaves, stem and wood in relation to taxonomy with notes on economy uses. Clarendon Press, Oxford.Search in Google Scholar

Moniz, P., Lino, J., Duarte, L.C., Roseiro, L.B., Boeriu, C.G., Pereira, H., and Carvalheiro, F. (2015). Fractionation of hemicelluloses and lignin from rice straw by combining autohydrolysis and optimised mild organosolv delignification. BioResources 10: 2626–2641, https://doi.org/10.15376/biores.10.2.2626-2641.Search in Google Scholar

Mori, F.A., Claudia Lopes, S.O., Mendes, L.M., Silva, J.R.M., Melo, V.M. (2003). Influence of sulfite and sodium hydroxide on the quantification in tannins of the bark of barbatimão (Stryphnodendron adstringens). Floresta e Ambiente 10: 86e92.Search in Google Scholar

Mota, G.S., Sartori, C.J., Miranda, I., Quilhó, T., Mori, F.A., and Pereira, H. (2017). Bark anatomy, chemical composition and ethanol–waterextract composition of Anadenanthera peregrina and Anadenanthera colubrina. PLoS One 12: 1–14, https://doi.org/10.1371/journal.pone.0189263.Search in Google Scholar PubMed PubMed Central

Mota, G.S., Araujo, E.S., Mário Lorenço, M., de Abreu, J.L.L., Mori, C.L.S.O., Ferreira, C.A., Silva, M.G., Akira Mori, F., and Ferreira, G.C. (2021a). Bark of Astronium lecointei Ducke trees from the Amazon: chemical and structural characterization. Eur. J. Wood Wood Prod., https://doi.org/10.1007/s00107-021-01670-w.Search in Google Scholar

Mota, G.S., Sartori, C.J., Ribeiro, A.O., Quilhó, T., Miranda, I., Ferreira, G.C., Perreira, H., and Pereira, H. (2021b). Bark characterization of Tachigali guianensis and Tachigali glauca from the Amazon under a valorization perspective. BioResources 16: 2953–2970, https://doi.org/10.15376/biores.16.2.2953-2970.Search in Google Scholar

Murthy, K.S.R., Reddy, M.C, Rani, S.S., and Pullaiah, T (2016). Bioactive principles and biological properties of essential oils of Burseraceae: A review. J. pharmacogn. phytochem. 5: 247–258.Search in Google Scholar

Palermo, F.H., Rodrigues, M.I.A., Nicolai, J., Machado, S.R., and Rodrigues, T.M. (2018). Resin secretory canals in Protium heptaphyllum (Aubl.) Marchand. (Burseraceae): a tridimensional branched and anastomosed system. Protoplasma 255: 899–910, https://doi.org/10.1007/s00709-017-1197-6.Search in Google Scholar PubMed

Patias, N.S., Sinhorin, V.D.G., Moura, F.R., Cunha, A.P.S., Lima, R.R.S., Costa, R.J.C., Costa, T.B., Cavalheiro, L., Bicudo, R.C., and Sinhorin, A.P.S.P. (2021). Identification of flavonoids by LC-MS/MS in leaves extract from Protium heptaphyllum (Aubl.) march and antioxidant activity in mice. Nat. Prod. J. 11: 715–727, https://doi.org/10.2174/2210315510999200817165311.Search in Google Scholar

Pereira, H. (1988). Chemical composition and variability of cork form Quercus suber L. Wood Sci. Technol. 22: 211–218, https://doi.org/10.1007/BF00386015.Search in Google Scholar

Pizzi, A. and Mittal, K.L. (1994). Handbook of Adhesive Technology. Marcell Dekker.Search in Google Scholar

Rafie, S.A., Farhoosh, R., and Sharif, A. (2018). Antioxidant activity of gallic acid as affected by an extra carboxyl group than pyrogallol in various oxidative environments. Eur. J. Lipid Sci. Technol. 120, https://doi.org/10.1002/ejlt.201800319.Search in Google Scholar

Saad, B., Sing, Y.Y., Nawi, M.A., Hashim, N., Ali, A.S.M., Saleh, M.I., Sulaiman, S.F., Talib, K.M., and Ahmad, K. (2007). Determination of synthetic phenolic antioxidants in food items using reversed-phase HPLC. Food Chem. 105: 389–394, https://doi.org/10.1016/j.foodchem.2006.12.025.10.1016/j.foodchem.2006.12.025Search in Google Scholar

Sanchez-Martin, J., Beltran-Heredia, J., and Solera-Hernandez, C. (2010). Surface water and wastewater treatment using a new tannin-based coagulant. Pilot Plant Trials J. Environ. Manag. 91: 2051–2058, https://doi.org/10.1016/j.jenvman.2010.05.013.Search in Google Scholar PubMed

Santana, R.C., Rosa, A.S., Mateus, M.H.S., Soares, D.C., Atella, G., Guimarães, A.C., Siani, A.C., Ramos, M.F.S., Saraiva, E.M., and Silva, L.H.P. (2020). In vitro leishmanicidal activity of monoterpenes present in two species of Protium (Burseraceae) on Leishmania amazonensis. J. Ethnopharmacol. 259, https://doi.org/10.1016/j.jep.2020.112981.Search in Google Scholar PubMed

Santos, D.S. and Rodrigues, M.M.F. (2017). Atividades farmacológicas dos flavonoides: um estudo de revisão. Estação Científica 7: 29–35, https://doi.org/10.18468.10.18468/estcien.2017v7n3.p29-35Search in Google Scholar

Santos, H.C., Silva, S.J., and Nascimento, C.C. (2021). Hemical investigation, antifungal activity and anatomical aspects of Protium puncticulatum J.F. Macbr. and Protium tenuifolium (Engl.) Engl. Int. J. Innov. Educ. Res. 9.10.31686/ijier.vol9.iss5.3098Search in Google Scholar

Sartori, C.J., Mota, G.S., Ferreira, J., Miranda, I., Mori, F.A., and Pereira, H. (2016). Chemical characterization of the bark of Eucalyptus urophylla hybrids in view of their valorization in biorefineries. Holzforschung 70: 819–828, https://doi.org/10.1515/hf-2015-0258.Search in Google Scholar

Sartori, C.J., Mota, G.S., Miranda, I., Mori, F.A., and Pereira, H. (2018). Tannin extraction and characterization of polar extracts from the barks of two Eucalyptus urophilla hybrids. BioResources 13: 4820–4831, https://doi.org/10.15376/biores.13.3.4820-4831.Search in Google Scholar

Serra, O. and Geldner, N. (2022). The making of suberin. New Phytol. 3: 848–866, https://doi.org/10.1111/nph.18202.Search in Google Scholar PubMed PubMed Central

Sillero, L., Prado, R., Andrés, M.A., and Labidi, J. (2019). Characterisation of bark of six species from mixed Atlantic forest. Ind. Crop Prod. 137: 276–284, https://doi-org.ez26.periodicos.capes.gov.br/10.1016/j.indcrop.2019.05.033.10.1016/j.indcrop.2019.05.033Search in Google Scholar

Silva, E.R., Oliveira, D.R., Fernandes, P.D., Bizzo, H.R., and Leitão, S.G. (2017). Ethnopharmacological evaluation of Breu essential oils from Protium species administered by inhalation. Hindawi 2017, https://doi10.1155/2017/2924171.10.1155/2017/2924171Search in Google Scholar PubMed PubMed Central

Silva, B.C.E., Arruda, L.C.P., Vieira, J.I.T., Soares, P.C., and Guerra, M.M.P. (2019). (+)-Catechin and (-)-epigallocatechin gallate: are these promising antioxidant therapies for frozen goat semen? Arq. Bras. Med. Vet. Zootec. 71: 521–528, https://doi.org/10.1590/1678-4162-10539.Search in Google Scholar

Singleton, V.L. and Rossi Junior, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagentes. Am. J. Enol. Vitic. 16: 144–158, https://doi.org/10.5344/ajev.1965.16.3.144.Search in Google Scholar

Song, Q., Wang, Y., Huang, L., Shen, M., Yu, Y., Yu, G., Chen, Y., and Xie, J. (2021). Review of the relationships among polysaccharides, gut microbiota, and human health. Food Res. Int. 140, https://doi.org/10.1016/j.foodres.2020.109858.Search in Google Scholar PubMed

Sousa, T.B., Mota, G.S., Araujo, E.S., Carréra, J.C., Silva, E.P., Souza, S.G., Lorenço, M.S., and Mori, F.A. (2020). Chemical and structural characterization of Myracrodruon urundeuva barks aiming at their potential use and elaboration of a sustainable management plan. Biomass Convers. Biorefin. 12: 1583–1593, https://doi-org.ez26.periodicos.capes.gov.br/10.1007/s13399-020-01093-2.10.1007/s13399-020-01093-2Search in Google Scholar

Souza, D.G., Campos, D.B.P., Ucella Filho, J.G.M., Gomes, J.P., and Azêvedo, T.K.B. (2019). Quantificação de taninos presentes na casca da Mimosa caealpiniifolia Benth. e sua utilização no tratamento de efluentes. Nativa 7: 789–793, https://doi.org/10.31413/nativa.v7i6.8631.Search in Google Scholar

Souza, T.B., Mota, G.S., Araujo, E.S., Carréra, J.C., Silva, E.P., Souza, S.G., Lorenço, M.S., Ferreira, V.R.F., and Mori, F.A. (2021). The bark of Stryphnodendron rotundifolium as a source of phenolic extracts with antioxidant properties. Wood Sci. Technol. 55: 1057–1074, https://doi.org/10.1007/s00226-021-01293-7.Search in Google Scholar

Teixeira, M.L. (2012). Citrumelo Swingle: caracterização química, atividade antioxidante e antifúngica dos óleos essenciais das cascas frescas e secas. Magistra 24: 194–203.Search in Google Scholar

Yazaki, Y. and Collins, P.J. (1994). Wood adhesives based on tannin extracts from barks of some pine and spruce species. Holz als Roh- und Werkstoff 52: 307–310.10.1007/BF02621420Search in Google Scholar

Yazaki, Y., Guangcheng, Z., and Searle, S.D. (1991). Extractive yields, Stiasny values and polyflavonoid contents in barks from six acacia species in Australia. Aust. For. 554: 154–156, https://doi.org/10.1080/00049158.1991.10674572.Search in Google Scholar

Zhishen, J., Mengcheng, T., and Jinming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555–559, https://doi.org/10.1016/S0308-8146(98)00102-2.Search in Google Scholar

Received: 2023-04-16
Accepted: 2023-11-15
Published Online: 2023-12-26
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2023-0039/html
Scroll to top button