Skip to main content
Log in

Single-Atom Alloy Pd1Ag6/Al2O3 Egg-Shell Catalyst for Selective Acetylene Hydrogenation

  • CHEMISTRY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

Here, we report the synthesis of a single-atom alloy Pd1Ag6/Al2O3 catalyst with an egg-shell distribution of the active component over the catalyst granules for the selective hydrogenation of acetylene traces in ethylene. The formation of an egg-shell structure has been confirmed by electron probe microanalysis, which demonstrates that metals are predominantly localized at a depth of 130–160 µm from the granule surface. Transmission electron microscopy and X-ray photoelectron spectroscopy have provided evidence of the formation of a PdAg substitutional solid solution with electron density transfer from Ag to Pd. The formation of Pd1 single sites has been confirmed by IR spectra of adsorbed CO. In the selective hydrogenation of acetylene, the synthesized single-atom alloy Pd1Ag6/Al2O3 with an egg-shell distribution shows high selectivity, which radically exceeds the selectivity of the palladium counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Gao, Y., Neal, L., Ding, D., Wu, W., Baroi, C., Gaffney, A.M., and Li, F., ACS Catal., 2019, vol. 9, pp. 8592–8621. https://doi.org/10.1021/acscatal.9b02922

    Article  CAS  Google Scholar 

  2. Shen, F., Wang, X., Huang, L., Ye, Z., and Qian, F., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 1686–1700. https://doi.org/10.1021/acs.iecr.8b05247

    Article  CAS  Google Scholar 

  3. Sundaram, K.M., Shreehan, M.M., and Olszewski, E.F., in Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, 2000, vol. 9, p. 431. https://doi.org/10.1002/0471238961.0520082519211404.a01.pub3

  4. Zimmermann, H. and Walzl, R., Ethylene, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, 2000, vol. 13, p. 465. https://doi.org/10.1002/14356007.a10_045.pub3

  5. Akah, A., Williams, J., and Ghrami, M., Catal. Surv. Asia, 2019, vol. 23, pp. 265–276. https://doi.org/10.1007/s10563-019-09280-6

    Article  CAS  Google Scholar 

  6. Gholami, Z., Gholami, F., Tisler, Z., Tomas, M., and Vakili, M., Energies, 2021, vol. 14, p. 1089. https://doi.org/10.3390/en14041089

    Article  CAS  Google Scholar 

  7. Zakria, M.H., Mohd Nawawi, M.G., Abdul Rahman, M.R., and Saudi, M.A., Polyolefins J., 2021, vol. 8, pp. 105–113. https://doi.org/10.22063/poj.2021.2795.1169

    Article  CAS  Google Scholar 

  8. Borodziński, A. and Bond, G.C., Catal. Rev., 2008, vol. 50, pp. 379–469. https://doi.org/10.1080/01614940802142102

    Article  CAS  Google Scholar 

  9. Arnold, H., Döbert, F., and Gaube, J., in Handbook of Heterogeneous Catalysis, Ertl, G., Knözinger, H., Schüth, F., and Weitkamp, J., Eds., Wiley-VCH, 2008, pp. 3266–3284. https://doi.org/10.1002/9783527610044.hetcat0166

  10. Glyzdova D.V., Smirnova N.S., Shlyapin D.A., Tsyrul’nikov P.G. Russ. J. Gen. Chem., 2020, vol. 90, pp. 1120–1140. https://doi.org/10.1134/S1070363220060298

    Article  CAS  Google Scholar 

  11. McCue, A.J. and Anderson, J.A., Front. Chem. Sci. Eng., 2015, vol. 9, pp. 142–153. https://doi.org/10.1007/s11705-015-1516-4

    Article  CAS  Google Scholar 

  12. Shittu, T.D. and Ayodele, O.B., Front. Chem. Sci. Eng., 2022, vol. 16, pp. 1031–1059. https://doi.org/10.1007/s11705-021-2113-3

    Article  CAS  Google Scholar 

  13. Ravanchi, M.T., Sahebdelfar, S., and Komeili, S., Rev. Chem. Eng., 2018, vol. 34, pp. 215–237. https://doi.org/10.1515/revce-2016-0036

    Article  CAS  Google Scholar 

  14. Concepción, P., Garcia, S., Hernández-Garrido, J.C., Calvino, J.J., and Corma, A., Catal. Today, 2016, vol. 259, pp. 213–221. https://doi.org/10.1016/j.cattod.2015.07.022

    Article  CAS  Google Scholar 

  15. Nikolaev, S.A. and Krotova, I.N., Petrol. Chem., 2013, vol. 53, pp. 394–400. https://doi.org/10.1134/S0965544113050071

    Article  CAS  Google Scholar 

  16. Choudhary, T.V., Sivadinarayana, C., Datye, A.K., Kumar, D., and Goodman, D.W., Catal. Lett., 2003, vol. 86, pp. 1–8. https://doi.org/10.1023/A:1022694505504

    Article  CAS  Google Scholar 

  17. Zhang, R., Zhang, J., Zhao, B., He, L., Wang, A., and Wang, B., J. Phys. Chem. C, 2017, vol. 121, pp. 27936–27949. https://doi.org/10.1021/acs.jpcc.7b08125

    Article  CAS  Google Scholar 

  18. McCue, A.J., Shepherd, A.M., and Anderson, J.A., Catal. Sci. Tech., 2015, vol. 5, pp. 2880–2890. https://doi.org/10.1039/C5CY00253B

    Article  CAS  Google Scholar 

  19. Cao, X., Mirjalili, A., Wheeler, J., Xie, W., and Jang, B.W.-L., Front. Chem. Sci. Eng., 2015, vol. 9, pp. 442–449. https://doi.org/10.1007/s11705-015-1547-x

    Article  CAS  Google Scholar 

  20. Friedrich, M., Villaseca, S.A., Szentmiklósi, L., Teschner, D., and Armbrüster, M., Materials, 2013, vol. 6, pp. 2958–2977. https://doi.org/10.3390/ma6072958

    Article  PubMed  PubMed Central  Google Scholar 

  21. Glyzdova, D.V., Smirnova, N.S., Leont’eva, N.N., Gerasimov, E.Yu., Prosvirin, I.P., Vershinin, V.I., Shlyapin, D.A., and Tsyrul’nikov, P.G., Kinet. Catal., 2017, vol. 58, pp. 140–146. https://doi.org/10.1134/S0023158417020057

    Article  CAS  Google Scholar 

  22. Glyzdova, D.V., Afonasenko, T.N., Khramov, E.V., Trenikhin, M.V., Prosvirin, I.P., and Shlyapin, D.A., ChemCatChem, 2022, vol. 14, art. e202200893. https://doi.org/10.1002/cctc.202200893

    Article  CAS  Google Scholar 

  23. Mashkovskii, I.S., Tkachenko, O.P., Baeva, G.N., and Stakheev, A.Yu., Kinet. Catal., 2009, vol. 50, pp. 768–774. https://doi.org/10.1134/S0023158409050206

    Article  CAS  Google Scholar 

  24. Meunier, F., Maffre, M., Schuurman, Y., Colussi, S., and Trovarelli, A., Catal. Commun., 2018, vol. 105, pp. 52–55. https://doi.org/10.1016/j.catcom.2017.11.012

    Article  CAS  Google Scholar 

  25. Mashkovsky, I.S., Markov, P.V., Bragina, G.O., Baeva, G.N., Rassolov, A.V., Bukhtiyarov, A.V., Prosvirin, I.P., Bukhtiyarov, V.I., and Stakheev, A.Yu., Mendeleev Commun., 2018, vol. 28, pp. 152–154. https://doi.org/10.1016/j.mencom.2018.03.014

    Article  CAS  Google Scholar 

  26. Praserthdam, P., Ngamsom, B., Bogdanchikova, N., Phatanasri, S., and Pramotthana, M., Appl. Catal. A: Gen., 2002, vol. 230, pp. 41–51. https://doi.org/10.1016/S0926-860X(01)00993-0

    Article  CAS  Google Scholar 

  27. Takht Ravanchi, M., Sahebdelfar, S., Rahimi, Fard M., and Moosavi, H., Iran. J. Chem. Eng., 2021, vol. 18, pp. 19–30. https://doi.org/10.22034/ijche.2021.269052.1382

    Article  Google Scholar 

  28. Delgado, J.A., Benkirane, O., de Lachaux, S., Claver, C., Ferré, J., Curulla-Ferré, D., and Godard, C., ChemNanoMat, 2022, vol. 8, art. e202200058. https://doi.org/10.1002/cnma.202200058

    Article  CAS  Google Scholar 

  29. Kley, K.S., De Bellis, J., and Schuth, F., Catal. Sci. Technol., 2023, vol. 13, pp. 119–131. https://doi.org/10.1039/D2CY01424F

    Article  CAS  Google Scholar 

  30. Pei, G.X., Liu, X.Y., Wang, A., Lee, A.F., Isaacs, M.A., Li, L., Pan, X., Yang, X., Wang, X., Tai, Z., Wilson, K., and Zhang, T., ACS Catal., 2015, vol. 5, pp. 3717–3725. https://doi.org/10.1021/acscatal.5b00700

    Article  CAS  Google Scholar 

  31. Chai, S., Gao, D., Xia, J., Yang, Y., and Wang, X., ChemCatChem, 2023, vol. 15, art. e202300217. https://doi.org/10.1002/cctc.202300217

    Article  CAS  Google Scholar 

  32. Pachulski, A., Schodel, R., and Claus, P., Appl. Catal. A: Gen., 2012, vol. 445-446, pp. 107–120. https://doi.org/10.1016/j.apcata.2012.08.018

    Article  CAS  Google Scholar 

  33. Gotz, D., Kuhn, M., and Claus, P., Chem. Eng. Res. Des., 2015, vol. 94, pp. 594–604. https://doi.org/10.1016/j.cherd.2014.10.005

    Article  CAS  Google Scholar 

  34. Zhang, Q., Li, J., Liu, X., and Zhu, Q., Appl. Catal. A: Gen., 2000, vol. 197, pp. 221–228. https://doi.org/10.1016/S0926-860X(99)00463-9

    Article  CAS  Google Scholar 

  35. Huang, D.C., Chang, K.H., Pong, W.F., Tseng, P.K., Hung, K.J., and Huang, W.F., Catal. Lett., 1998, vol. 53, pp. 155–159. https://doi.org/10.1023/a:1019022326090

    Article  CAS  Google Scholar 

  36. Zhang, Y., Diao, W., Williams, C.T., and Monnier, J.R., Appl. Catal. A: Gen., 2014, vol. 469, pp. 419–426. https://doi.org/10.1016/j.apcata.2013.10.024

    Article  CAS  Google Scholar 

  37. Kuhn, M., Lucas, M., and Claus, P., Ind. Eng. Chem. Res., 2015, vol. 54, pp. 6683–6691. https://doi.org/10.1021/acs.iecr.5b01682

    Article  CAS  Google Scholar 

  38. Glyzdova, D.V., Afonasenko, T.N., Khramov, E.V., Leont’eva, N.N., Prosvirin, I.P., Bukhtiyarov, A.V., and Shlyapin, D.A., Appl. Catal. A: Gen., 2020, vol. 600, p. 117627. https://doi.org/10.1016/j.apcata.2020.117627

    Article  CAS  Google Scholar 

  39. Lee, J.H., Kim, S.K., Ahn, I.Y., Kim, W.-J., and Moon, S.H., Catal. Commun., 2011, vol. 12, pp. 1251–1254. https://doi.org/10.1016/j.catcom.2011.04.015

    Article  CAS  Google Scholar 

  40. Ahn, I.Y., Lee, J.H., Kim, S.K., and Moon, S.H., Appl. Catal. A: Gen., 2009, vol. 360, pp. 38–42. https://doi.org/10.1016/j.apcata.2009.02.044

    Article  CAS  Google Scholar 

  41. Pachulski, A., Schödel, R., and Claus, P., Appl. Catal. A: Gen., 2011, vol. 400, pp. 14–24. https://doi.org/10.1016/j.apcata.2011.03.019

    Article  CAS  Google Scholar 

  42. Hannagan, R.T., Giannakakis, G., Flytzani-Stephanopoulos, M., and Sykes, E.C.H., Chem. Rev., 2020, vol. 120, pp. 12044–12088. https://doi.org/10.1021/acs.chemrev.0c00078

    Article  CAS  PubMed  Google Scholar 

  43. Giannakakis, G., Flytzani-Stephanopoulos, M., and Sykes, E.C.H., Acc. Chem. Res., 2019, vol. 52, pp. 237–247. https://doi.org/10.1021/acs.accounts.8b00490

    Article  CAS  PubMed  Google Scholar 

  44. Mashkovsky, I.S., Markov, P.V., Rassolov, A.V., Patil, E.D., and Stakheev, A.Yu., Russ. Chem. Rev., 2023, vol. 92, art. RCR5087. https://doi.org/10.59761/RCR5087

    Article  Google Scholar 

  45. Rassolov, A.V., Bragina, G.O., Baeva, G.N., Mashkovsky, I.S., Stakheev, A.Yu., Kinet. Catal., 2020, vol. 61, pp. 869–878. https://doi.org/10.31857/S0453881120060131

    Article  CAS  Google Scholar 

  46. Rassolov, A.V., Mashkovsky, I.S., Bragina, G.O., Baeva, G.N., Markov, P.V., Smirnova, N.S., Warna, J., Stakheev, A.Yu., and Murzin, D.Yu., Mol. Catal., 2021, vol. 506, p. 111550. https://doi.org/10.1016/j.mcat.2021.111550

    Article  CAS  Google Scholar 

  47. Schimpf, S., Gaube, J., and Claus, P., in Basic Principles in Applied Catalysis, Springer Series in Chemical Physics, Baerns, M., Ed., Berlin; Heidelberg: Springer, 2004, vol. 75, pp. 85–123. https://doi.org/10.1007/978-3-662-05981-4_3.

  48. Takht Ravanchi, M. and Sahebdelfar, S., Appl. Catal. A: Gen., 2016, vol. 525, pp. 197–203. https://doi.org/10.1016/j.apcata.2016.07.014

    Article  CAS  Google Scholar 

  49. Wuchter, N., Schäfer, P., Schüler, C., Gaube, J., Miehe, G., and Fuess, H., Chem. Eng. Technol., 2006, vol. 29, pp. 1487–1495. https://doi.org/10.1002/ceat.200600237

    Article  CAS  Google Scholar 

  50. Osswald, J., Kovnir, K., Armbrüster, M., Giedigkeit, R., Jentoft, R.E., Wild, U., Grin, Yu., and Schlögl, R., J. Catal., 2008, vol. 258, pp. 219–227. https://doi.org/10.1016/j.jcat.2008.06.014

    Article  CAS  Google Scholar 

  51. Bukhtiyarov, A.V., Panafidin, M.A., Prosvirin, I.P., Mashkovsky, I.S., Markov, P.V., Rassolov, A.V., Smirnova, N.S., Baeva, G.N., Rameshan, C., Rameshan, R., Zubavichus, Ya.V., Bukhtiyarov, V.I., and Stakheev, A.Yu., Appl. Surf. Sci., 2022, vol. 604, p. 154497. https://doi.org/10.1016/j.apsusc.2022.154497

    Article  CAS  Google Scholar 

  52. Kim, S.K., Kim, C., Lee, J.H., Kim, J., Lee, H., and Moon, S.H., J. Catal., 2013, vol. 306, pp. 146–154. https://doi.org/10.1016/j.jcat.2013.06.018

    Article  CAS  Google Scholar 

  53. Lear, T., Marshall, R., Lopez-Sanchez, J.A., Jackson, S.D., Klapotke, T.M., Baumer, M., Rupprechter, G., Freund, H.J., and Lennon, D., J. Chem. Phys., 2005, vol. 123, p. 174706. https://doi.org/10.1063/1.2101487

    Article  CAS  PubMed  Google Scholar 

  54. Cabilla, G.C., Bonivardi, A.L., and Baltanás, M.A., Catal. Lett., 1998, vol. 55, pp. 147–156. https://doi.org/10.1023/A:1019095231484

    Article  CAS  Google Scholar 

  55. Vannice, M.A. and Wang, S.Y., J. Phys. Chem., 1981, vol. 85, pp. 2543–2546. https://doi.org/10.1021/j150617a026

    Article  CAS  Google Scholar 

  56. Rassolov, A.V., Bragina, G.O., Baeva, G.N., Smirnova, N.S., Kazakov, A.V., Mashkovsky, I.S., Bukhtiyarov, A.V., Zubavichus, Ya.V., and Stakheev, A.Yu., Kinet. Catal., 2020, vol. 61, pp. 758–767. https://doi.org/10.31857/S045388112005010X

    Article  CAS  Google Scholar 

  57. Aich, P., Wei, H., Basan, B., Kropf, A.J., Schweitzer, N.M., Marshall, C.L., Miller, J.T., and Meyer, R., J. Phys. Chem. C, 2015, vol. 119, pp. 18140–18148. https://doi.org/10.1021/acs.jpcc.5b01357

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.V. Reshetina (Gubkin State University) for the study of catalysts by the TEM method, as well as the Shared Facility Center “Analytical Center for Problems of Deep Processing of Oil and Petrochemistry” at the Institute of Petrochemical Synthesis, RAS, and personally Ph.D. A.A. Sadovnikov for studying the catalysts by XPS.

Funding

The study was supported by the Russian Science Foundation (project no. 23-13-00301, https://rscf.ru/project/23-13-00301/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. S. Mashkovsky or A. Yu. Stakheev.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Dedicated to the Anniversary of Corresponding Member of the RAS Al’bert L’vovich Lapidus

Translated by G. Kirakosyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashkovsky, I.S., Melnikov, D.P., Markov, P.V. et al. Single-Atom Alloy Pd1Ag6/Al2O3 Egg-Shell Catalyst for Selective Acetylene Hydrogenation. Dokl Chem 512, 272–280 (2023). https://doi.org/10.1134/S0012500823600736

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500823600736

Keywords:

Navigation