Skip to main content
Log in

Structural Design of Eu2+-Containing Glasses and Glass-Ceramics Based on the BaO–ZrO2–SiO2–MgF2 System for LED Application

  • CHEMICAL TECHNOLOGY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

An approach to designing the structure of Eu2+-containing silicate glass-crystalline materials was implemented for the first time, using which a rare-earth activator is introduced into Ba-containing silicates formed during glass crystallization. Eu2+-activated fluorine-containing glasses and glass-ceramics in the MgO–BaO–ZrO2–SiO2 system were synthesized, and their crystal structure and luminescence properties were studied. It was shown that the simultaneous incorporation of Eu into several different silicate crystals formed during the crystallization of glasses yields a material with a broad luminescence band in the visible part of the spectrum. A study of the luminescence excitation and emission spectra of glass demonstrated the possibility of excitation energy transfer from Eu2+ ions to Eu3+ ions. The approach proposed for the first time to designing the structure of glass-crystalline materials is quite promising for the further creation of new optical media used in high-power light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Liu, J., Wang, Z., He, K., Wei, L., Zhang, Z., Wei, Z., Yu, H., Zhang, H., and Wang, J., Opt. Express, 2014, vol. 22, no. 22, pp. 26933–26938. https://doi.org/10.1364/OE.22.026933

    Article  CAS  PubMed  Google Scholar 

  2. Bulyga, D.V. and Evstrop’ev, S.K., Opt. Spektrosk., 2022, vol. 130, no. 9, pp. 1455–1463. https://doi.org/10.21883/OS.2022.09.53309.3617-22

    Article  Google Scholar 

  3. Vu, N.-N., Kaliaguine, S., and Do, T.-O., Adv. Funct. Mater., 2019, vol. 29, p. 1901825. https://doi.org/10.1002/adfm.201901825

    Article  CAS  Google Scholar 

  4. Hu, T., Ning, L., Gao, Y., Qiao, J., Song, E., Chen, Z., Zhou, Y., Wang, J., Molokeev, M.S., Ke, X., Xia, Z., and Zhang, Q., Light Sci. Appl., 2021, vol. 10, p. 56. https://doi.org/10.1038/s41377-021-00498-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Biswas, K., Sontakke, A.D., Sen, R., and Annapurna, K., J. Fluoresc., 2012, vol. 22, pp. 745–752. https://doi.org/10.1007/s10895-011-1010-4

    Article  CAS  PubMed  Google Scholar 

  6. Lin, H., Hu, T., Cheng, Y., Chen, M., and Wang, Y., Laser Photon. Rev., 2018, vol. 12, no. 6, p. 1700344. https://doi.org/10.1002/lpor.201700344

    Article  CAS  Google Scholar 

  7. Nakanishi, T. and Tanabe, S., J. Light Vis. Env., 2008, vol. 32, no. 2, pp. 93–96. https://doi.org/10.2150/jlve.32.93

    Article  Google Scholar 

  8. Evstropiev, S.K., Shashkin, A.V., Knyazyan, N.B., Manukyan, G.G., Bagramyan, V.V., Timchuk, A.V., and Stolyarova, V.L., J. Non-Cryst. Solids, 2022, vol. 580, p. 121386. https://doi.org/10.1016/j.jnoncrysol.2021.121386

    Article  CAS  Google Scholar 

  9. Lima, S.M., Cunha Antrade, L.H., Silva, J.R., Bento, A.C., Baesso, M.L., Sampaio, J.A., de Oliveira Nunes, L.A., Guyot, Y., and Boulon, G., Opt. Express, 2012, vol. 20, no. 12, pp. 12658–12665. https://doi.org/10.1364/OE.20.012658

    Article  CAS  PubMed  Google Scholar 

  10. Chen, D., Xiang, W., Liang, X., Zhong, J., Yu, H., Ding, M., Lu, H., and Ji, Z., J. Eur. Ceram. Soc., 2015, vol. 35, no. 3, pp. 859–869. https://doi.org/10.1016/j.jeurceramsoc.2014.10.002

    Article  CAS  Google Scholar 

  11. Yu, H., Zi, W., Lan, S., Gan, S., Zou, H., Xu, X., and Hong, G., Luminescence, 2013, vol. 28, no. 5, pp. 679–684. https://doi.org/10.1002/bio.2415

    Article  CAS  PubMed  Google Scholar 

  12. Qiao, J. and Xia, Z., J. Appl. Phys., 2021, vol. 129, p. 200903. https://doi.org/10.1063/5.0050290

    Article  CAS  Google Scholar 

  13. Zhao, M., Zhang, Q., and Xia, Z., Acc. Mater. Res., 2020, vol. 1, no. 2, pp. 137–145. https://doi.org/10.1021/accountsmr.0c00014

    Article  CAS  Google Scholar 

  14. Shannon, R.D., Acta Crystallogr., 1976, vol. A32, pp. 751–767. https://doi.org/10.1107/S0567739476001551

    Article  CAS  Google Scholar 

  15. Han, J.K., Hannah, M.E., Piquette, A., Talbot, J.B., Mishra, K.C., and McKittrick, J., J. Lumin., 2015, vol. 161, pp. 20–24. https://doi.org/10.1016/j/jlumin.2014.12.032

    Article  CAS  Google Scholar 

  16. Xu, J., Zhao, Y., Chen, J., Mao, Z., Yang, Y., and Wang, D., Luminescence, 2017, vol. 32, no. 6, pp. 957–963. https://doi.org/10.1002/bio.3277

    Article  CAS  PubMed  Google Scholar 

  17. Ling, H., Hu, T., Cheng, Y., M, Chen, M., and Wang, Y., Laser Photonics Rev., 2018, vol. 12, no. 6, p. 1700344. https://doi.org/10.1002/lpor.201700344

    Article  CAS  Google Scholar 

  18. Bispo,A.G. Jr., Ceccato, D.A., Lima, S.A.M., and Pires, A.M., RSC Adv., 2017, vol. 7, pp. 53752–53762. https://doi.org/10.1039/c7ra10494d

    Article  CAS  Google Scholar 

  19. Chen, J., Liu, Y.-G., Liu, H., Yang, D., Ding, H., Fang, M., and Huang, Z., RSC Adv., 2014, vol. 4, pp. 18234–18239. https://doi.org/10.1039/C4RA00452C

    Article  CAS  Google Scholar 

  20. Kim, D., Jeon, K.-W., Jin, J.S., Kang, S.-G., Seo, D.-K., and Park, J.-C., RSC Adv., 2015, vol. 5, pp. 105339–105346. https://doi.org/10.1039/C5RA19712K

    Article  CAS  Google Scholar 

  21. Ji, W., Lee, M.-H., Hao, L., Xu, X., Agathopoulos, S., Zheng, D., and Fang, C., Inorg. Chem., 2015, vol. 54, pp. 1556–1562. https://doi.org/10.1021/ic502568s

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Q., Wang, Q., Wang, X., Ding, X., and Wang, Y., New J. Chem., 2016, vol. 40, pp. 8549–8555. https://doi.org/10.1039/C6NJ01831A

    Article  CAS  Google Scholar 

  23. Sao, S.K., Brahme, N., Bisen, D.P., and Tiwari, G., Luminescence, 2016, vol. 31, no. 7, pp. 1364–1371. https://doi.org/10.1002/bio.3116

    Article  CAS  PubMed  Google Scholar 

  24. Craievich, A.F., Zanotto, E.E., and James, P.F., Bull. Minéral., 1983, vol. 106, nos. 1–2, pp. 169–184.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-53-05013) and the National Academy of Sciences of the Republic of Armenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Evstropiev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evstropiev, S.K., Stolyarova, V.L., Knyazyan, N.B. et al. Structural Design of Eu2+-Containing Glasses and Glass-Ceramics Based on the BaO–ZrO2–SiO2–MgF2 System for LED Application. Dokl Chem 512, 304–308 (2023). https://doi.org/10.1134/S0012500823700180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500823700180

Keywords:

Navigation