Skip to main content
Log in

Computer Simulation of a Biphasic Catalytic Process in the Presence of Polymer Microgels

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

The reaction of a biphasic catalysis with microgels bearing catalytic groups adsorbed at liquid interface was simulated for the first time using dissipative particle dynamics. It was shown that the rate of the catalytic process increases with the degree of deformation of the polymer network, which depends on the fraction of the crosslinker and the solubility of the polymer in both phases. It was found that the highest reaction rate was observed when the microgel was soluble in both phases due to an increase in its porosity (in comparison with amphiphilic microgels) and in the water–microgel–oil contact area with a simultaneous decrease in the time for the reagents to reach the catalytic groups due to the flattening of the microgel. The results obtained can be useful for increasing the efficiency of a wide range of catalytic reactions of the type considered through the use of network-like macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Karg, M., Pich, A., Hellweg, T., Hoare, T., Lyon, L.A., Crassous, J.J., Suzuki, D., Gumerov, R.A., Schneider, S., Potemkin, I.I., and Richtering, W., Langmuir, 2019, vol. 35, pp. 6231–6255. https://doi.org/10.1021/acs.langmuir.8b04304

    Article  CAS  PubMed  Google Scholar 

  2. Anakhov, M.V., Gumerov, R.A., and Potemkin, I.I., Mendeleev Commun., 2020, vol. 30, pp. 555–562. https://doi.org/10.1016/j.mencom.2020.09.002

    Article  CAS  Google Scholar 

  3. Lyon, L.A. and Fernandez-Nieves, A., Ann. Rev. Phys. Chem., 2012, vol. 63, pp. 25–43. https://doi.org/10.1146/annurev-physchem-032511-143735

    Article  CAS  Google Scholar 

  4. Richtering, W., Langmuir, 2012, vol. 28, pp. 17218–17229. https://doi.org/10.1021/la302331s

  5. Zlotin, S.G., Kucherenko, A.S., and Beletskaya, I.P., Russ. Chem. Rev., 2009, vol. 78, pp. 737–784. https://doi.org/10.1070/RC2009v078n08ABEH004040

    Article  CAS  Google Scholar 

  6. Beletskaya, I.P., Kashin, A.N., Litvinov, A.E., Tyurin, V.S., Valetsky, P.M., and van Koten, G., Organometallics, 2006, vol. 25, pp. 154–158. https://doi.org/10.1021/om050562x

    Article  CAS  Google Scholar 

  7. Beletskaya, I.P., Khokhlov, A.R., Tarasenko, E.A., and Tyurin, V.S., J. Organomet. Chem., 2007, vol. 692, pp. 4402–4406. https://doi.org/10.1016/j.jorganchem.2007.06.056

    Article  CAS  Google Scholar 

  8. Beletskaya, I.P., Kashin, A.N., Khotina, I.A., and Khokhlov, A.R., Synlett, 2008, pp. 1547–1552. https://doi.org/10.1055/s-2008-1078430

  9. Beletskaya, I.P., Selivanova, A.V., Tyurin, V.S., Matveev, V.V., and Khokhlov, A.R., Russ. J. Org. Chem., 2010, vol. 46, pp. 157–161. https://doi.org/10.1134/S1070428010020016

    Article  CAS  Google Scholar 

  10. Xiong, L., Zhang, H., Zhong, A., He, Z., and Huang, K., Chem. Commun., 2014, vol. 50, pp. 14778–14781. https://doi.org/10.1039/c4cc06573e

    Article  CAS  Google Scholar 

  11. Ahmed, E., Cho, J., Friedmann, L., Jang, S.S., and Weck, M., J. Am. Chem. Soc., 2022, vol. 2, pp. 2316–2326. https://doi.org/10.1021/jacsau.2c00367

    Article  CAS  Google Scholar 

  12. Hajji, C. and Haag, R., in Dendrimer Catalysis, Gade, L.H., Ed., Berlin, Heidelberg: Springer, vol. 20, 2006, pp. 149–176. https://doi.org/10.1007/3418_035.

  13. Wiese, S., Spiess, A.C., and Richtering, W., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, pp. 576–579. https://doi.org/10.1002/anie.201206931

    Article  CAS  PubMed  Google Scholar 

  14. Ajmal, M., Demirci, S., Siddiq, M., Aktas, N., and Sahiner, N., New J. Chem., 2016, vol. 40, pp. 1485–1496. https://doi.org/10.1039/C5NJ02298C

    Article  CAS  Google Scholar 

  15. Borrmann, R., Palchyk, V., Pich, A., and Rueping, M., ACS Catal., 2018, vol. 8, pp. 7991–7996. https://doi.org/10.1021/acscatal.8b01408

    Article  CAS  Google Scholar 

  16. Tan, K.H., Xu, W., Stefka, S., Demco, D.E., Kharandiuk, T., Ivasiv, V., Nebesnyi, R., Petrovskii, V.S., Potemkin, I.I., and Pich, A., Angew. Chem., Int. Ed. Engl., 2019, vol. 58, pp. 9791–9796. https://doi.org/10.1002/anie.201901161

    Article  CAS  PubMed  Google Scholar 

  17. Kleinschmidt, D., Fernandes, M.S., Mork, M., Meyer, A.A., Krischel, J., Anakhov, M.V., Gumerov, R.A., Potemkin, I.I., Rueping, M., and Pich, A., J. Colloid Interface Sci., 2020, vol. 559, pp. 76–87. https://doi.org/10.1016/j.jcis.2019.10.005

    Article  CAS  PubMed  Google Scholar 

  18. Kleinschmidt, D., Nothdurft, K., Anakhov, M.V., Meyer, A.A., Mork, M., Gumerov, R.A., Potemkin, I.I., Richtering, W., and Pich, A., Mater. Adv., 2020, vol. 1, pp. 2983–2993. https://doi.org/10.1039/d0ma00407c

    Article  CAS  Google Scholar 

  19. Sabadasch, V., Dirksen, M., Fandrich, P., Cremer, J., Biere, N., Anselmetti, D., and Hellweg, T., ACS Appl. Mater. Interfaces, 2022, vol. 14, pp. 49181–49188. https://doi.org/10.1021/acsami.2c14415

    Article  CAS  PubMed  Google Scholar 

  20. Gumerov, R.A., Rumyantsev, A.M., Rudov, A.A., Pich, A., Richtering, W., Möller, M., and Potemkin, I.I., ACS Macro Lett., 2016, vol. 5, pp. 612–616. https://doi.org/10.1021/acsmacrolett.6b00149

    Article  CAS  PubMed  Google Scholar 

  21. Gumerov, R.A., Filippov, S.A., Richtering, W., Pich, A., and Potemkin, I.I., Soft Matter, 2019, vol. 15, pp. 3978–3986. https://doi.org/10.1039/C9SM00389D

    Article  CAS  PubMed  Google Scholar 

  22. Hoogerbrugge, P.J. and Koelman, J.M.V.A., Europhys. Lett., 1992, vol. 19, pp. 155–160. https://doi.org/10.1209/0295-5075/19/3/001

    Article  Google Scholar 

  23. Español, P. and Warren, P., Europhys. Lett., 1995, vol. 30, pp. 191–196. https://doi.org/10.1209/0295-5075/30/4/001

    Article  Google Scholar 

  24. Groot, R.D. and Warren, P.B., J. Chem. Phys., 1997, vol. 107, pp. 4423–4435. https://doi.org/10.1063/1.474784

    Article  CAS  Google Scholar 

  25. Goicochea, A., Romero-Bastida, M., and López-Rendón, R., Mol. Phys., 2007, vol. 105, pp. 2375–2381. https://doi.org/10.1080/00268970701624679

    Article  CAS  Google Scholar 

  26. Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., and Crozier, P.S., in ’t Veld, P.J., Kohlmeyer, A., Moore, S.G., Nguyen, T.D., Shan, R., Stevens, M.J., Tranchida, J., Trott, C., and Plimpton, S.J., Comput. Phys. Commun., 2022, vol. 271, p. 108171. https://doi.org/10.1016/j.cpc.2021.108171

    Article  CAS  Google Scholar 

  27. Komarova, G.A., Kozhunova, E.Yu., and Potemkin, I.I., Molecules, 2022, vol. 27, p. 8549. https://doi.org/10.3390/molecules27238549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., Shvets, P.A., Sobolev, S.I., Sidorov, I.Yu., Stefanov, K.S., Voevodin, V.V., and Zhumatiy, S.A., Supercomput. Front. Innov., 2019, vol. 6, pp. 4–11. https://doi.org/10.14529/jsfi190201

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The simulation was carried out on the Lomonosov-2 supercomputer [28].

Funding

This work was supported by the Russian Science Foundation (grant no. 21-73-30013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Potemkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to the Anniversary of Academician Irina Petrovna Beletskaya

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumerov, R.A., Anakhov, M.V. & Potemkin, I.I. Computer Simulation of a Biphasic Catalytic Process in the Presence of Polymer Microgels. Dokl Phys Chem 512, 141–147 (2023). https://doi.org/10.1134/S0012501623600225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501623600225

Keywords:

Navigation