Skip to main content
Log in

Nonequilibrium Nuclear Spin States of Ethylene during Acetylene Hydrogenation with Parahydrogen over Immobilized Iridium Complexes

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

Immobilized rhodium and iridium complexes have been prepared and characterized by X-ray photoelectron spectroscopy. For the first time, hyperpolarized 13C-ethylene was detected directly in the gas phase during acetylene hydrogenation with parahydrogen over immobilized iridium complexes. The line shape of polarized 13С‑ethylene unambiguously indicates that the hydrogen addition to the triple bond of acetylene over immobilized iridium complexes proceeds stereoselectively via syn-addition. It has been shown that the selective acetylene hydrogenation with parahydrogen over immobilized iridium complexes is an efficient chemical method for enriching the nuclear spin isomers of ethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Bos, A.N.R. and Westerterp, K.R., Chem. Eng. Process.: Process Intensif., 1993, vol. 32, pp. 1–7. https://doi.org/10.1016/0255-2701(93)87001-B

    Article  CAS  Google Scholar 

  2. Zhivonitko, V.V., Kovtunov, K.V., Chapovsky, P.L., and Koptyug, I.V., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, pp. 13251–13255. https://doi.org/10.1002/anie.201307389

    Article  CAS  PubMed  Google Scholar 

  3. Chapovsky, P.L., Zhivonitko, V.V., and Koptyug, I.V., J. Phys. Chem. A, 2013, vol. 117, pp. 9673–9683. https://doi.org/10.1021/jp312322f

    Article  CAS  PubMed  Google Scholar 

  4. Gel'mukhanov, F.Kh., and Shalagin, A.M., JETP Lett., 1979, vol. 29, pp. 711–713.

    Google Scholar 

  5. Sun, Z.-D., Takagi, K., and Matsushima, F., Science, 2005, vol. 310, pp. 1938–1941. https://doi.org/10.1126/science.1120037

    Article  CAS  PubMed  Google Scholar 

  6. Eills, J., Budker, D., Cavagnero, S., Chekmenev, E.Y., Elliott, S.J., Jannin, S., Lesage, A., Matysik, J., Meersmann, T., Prisner, T., Reimer, J.A., Yang, H., and Koptyug, I.V., Chem. Rev., 2023, vol. 123, pp. 1417–1551. https://doi.org/10.1021/acs.chemrev.2c00534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kovtunov, K.V., Burueva, D.B., Sviyazov, S.V., Salnikov, O.G., Goodson, B.M., Chekmenev, E.Y., and Koptyug, I.V., Russ. Chem. Bull., 2021, vol. 70, pp. 2382–2389. https://doi.org/10.1007/s11172-021-3357-2

    Article  CAS  Google Scholar 

  8. Pokochueva, E.V., Svyatova, A.I., Burueva, D.B., and Koptyug, I.V., Russ. Chem. Bull., 2023, vol. 72, pp. 1–19. https://doi.org/10.1007/s11172-023-3711-7

    Article  CAS  Google Scholar 

  9. Duckett, S.B. and Mewis, R.E., Acc. Chem. Res., 2012, vol. 45, pp. 1247–1257. https://doi.org/10.1021/ar2003094

    Article  CAS  PubMed  Google Scholar 

  10. Koptyug, I.V., Kovtunov, K.V., Burt, S.R., Anwar, M.S., Hilty, C., Han, S.-I., Pines, A., and Sagdeev, R.Z., J. Am. Chem. Soc., 2007, vol. 129, pp. 5580–5586. https://doi.org/10.1021/ja068653o

    Article  CAS  PubMed  Google Scholar 

  11. Kovtunov, K.V., Beck, I.E., Bukhtiyarov, V.I., and Koptyug, I.V., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, pp. 1492–1495. https://doi.org/10.1002/anie.200704881

    Article  CAS  PubMed  Google Scholar 

  12. Kovtunov, K.V., Zhivonitko, V.V., Skovpin, I.V., Barskiy, D.A., and Koptyug, I.V., Top. Curr. Chem., 2013, vol. 338, pp. 123–180. https://doi.org/10.1007/128_2012_371

    Article  CAS  PubMed  Google Scholar 

  13. Pokochueva, E.V., Burueva, D.B., Kovtunova, L.M., Bukhtiyarov, A.V., Gladky, A.Yu., Kovtunov, K.V., Koptyug, I.V., and Bukhtiyarov, V.I., Faraday Discuss., 2021, vol. 229, pp. 161–175. https://doi.org/10.1039/C9FD00138G

    Article  CAS  PubMed  Google Scholar 

  14. Burueva, D.B., Kovtunov, K.V., Bukhtiyarov, A.V., Barskiy, D.A., Prosvirin, I.P., Mashkovsky, I.S., Baeva, G.N., Bukhtiyarov, V.I., Stakheev, A.Yu., and Koptyug, I.V., Chem.-Eur. J., 2018, vol. 24, pp. 2547–2553. https://doi.org/10.1002/chem.201705644

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, E.W., Maligal-Ganesh, R., Xiao, C., Goh, T.-W., Qi, Z., Pei, Y., Hagelin-Weaver, H.E., Huang, W., and Bowers, C.R., Angew. Chem., Int. Ed. Engl., 2017, vol. 56, pp. 3925–3929. https://doi.org/10.1002/anie.201701314

    Article  CAS  PubMed  Google Scholar 

  16. Corma, A., Salnikov, O.G., Barskiy, D.A., Kovtunov, K.V., and Koptyug, I.V., Chem.-Eur. J., 2015, vol. 21, pp. 7012–7015. https://doi.org/10.1002/chem.201406664

    Article  CAS  PubMed  Google Scholar 

  17. Skovpin, I.V., Zhivonitko, V.V., and Koptyug, I.V., Appl. Magn. Reson., 2011, vol. 41, pp. 393–410. https://doi.org/10.1007/s00723-011-0255-z

    Article  CAS  Google Scholar 

  18. Skovpin, I.V., Zhivonitko, V.V., Kaptein, R., and Koptyug, I.V., Appl. Magn. Reson., 2013, vol. 44, pp. 289–300. https://doi.org/10.1007/s00723-012-0419-5

    Article  CAS  Google Scholar 

  19. Skovpin, I.V., Zhivonitko, V.V., Prosvirin, I.P., Khabibulin, D.F., and Koptyug, I.V., Z. Phys. Chem., 2017, vol. 231, pp. 575–592. https://doi.org/10.1515/zpch-2016-0824

    Article  CAS  Google Scholar 

  20. Skovpin, I.V., Kovtunova, L.M., Nartova, A.V., Kvon, R.I., Bukhtiyarov, V.I., and Koptyug, I.V., Catal. Sci. Technol., 2022, vol. 12, pp. 3247–3253. https://doi.org/10.1039/D1CY02258J

    Article  CAS  Google Scholar 

  21. Crabtree, R.H. and Morris, G.E., J. Organomet. Chem., 1977, vol. 135, pp. 395–403. https://doi.org/10.1016/S0022-328X(00)88091-2

    Article  CAS  Google Scholar 

  22. Yamada, T., Matsuo, T., Ogawa, A., Ichikawa, T., Kobayashi, Y., Masuda, H., Miyamoto, R., Bai, H., Meguro, K., Sawama, Y., Monguchi, Y., and Sajiki, H., Org. Process Res. Dev., 2018, vol. 23, pp. 462–469. https://doi.org/10.1021/acs.oprd.8b00291

    Article  CAS  Google Scholar 

  23. Huang, L., Ang, T.P., Wang, Z., Tan, J., Chen, J., and Wong, P.K., Inorg. Chem., 2011, vol. 50, pp. 2094–2111. https://doi.org/10.1021/ic100824e

    Article  CAS  PubMed  Google Scholar 

  24. Crudden, C.M., Sateesh, M., and Lewis, R., J. Am. Chem. Soc., 2005, vol. 127, pp. 10045–10050. https://doi.org/10.1021/ja0430954

    Article  CAS  PubMed  Google Scholar 

  25. Holsboer, F., Beck, W., and Bartunik, H.D., J. Chem. Soc., Dalton Trans., 1973, pp. 1828–1829. https://doi.org/10.1039/DT9730001828

  26. Fernando, N.K., Cairns, A.B., Murray, C.A., Thompson, A.L., Dickerson, J.L., Garman, E.F., Ahmed, N., Ratcliff, L.E., and Regoutz, A., J. Phys. Chem. A, 2021, vol. 125, pp. 7473–7488. https://doi.org/10.1021/acs.jpca.1c05759

    Article  CAS  PubMed  Google Scholar 

  27. Bowers, C.R. and Weitekamp, D.P., J. Am. Chem. Soc., 1987, vol. 109, pp. 5541–5542. https://doi.org/10.1021/ja00252a049

    Article  CAS  Google Scholar 

  28. Salnikov, O.G., Kovtunov, K.V., Barskiy, D.A., Khudorozhkov, A.K., Inozemtseva, E.A., Prosvirin, I.P., Bukhtiyarov, V.I., and Koptyug, I.V., ACS Catal., 2014, vol. 4, pp. 2022–2028. https://doi.org/10.1021/cs500426a

    Article  CAS  Google Scholar 

  29. Giordano, G., Crabtree, R.H., Heintz, R.M., Forster, D., and Morris, D.E., in Inorganic Syntheses, vol. 19, Shriver, D.F., Ed., Wiley, 1979, pp. 218–220. https://doi.org/10.1002/9780470132500.ch50.

  30. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, 2nd ed., Perkin-Elmer Corp., Eden Priarie, MN, USA, 1992.

    Google Scholar 

  31. XPSPEAK, free software for the analysis of XPS spectra, http://xpspeak.software.informer.com/4.1/ (the access date 27.12.2022).

  32. Kvon, R.I., Nartova, A.V., Kovtunova, L.M., and Bukhtiyarov, V.I., J. Struct. Chem., 2023, vol. 64, pp. 270–275. https://doi.org/10.1134/S0022476623020117

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

L.M.K., A.V.N., R.I.K., and V.I.B. express gratitude to Boreskov Institute of Catalysis SB RAS for the opportunity to study the synthesized catalysts using XPS. I.V.S., S.V.S., D.B.B., and I.V.K. thank the Ministry of Science and Higher Education of the Russian Federation for access to the NMR spectrometer.

Funding

The development of methods for the synthesis of the described catalysts, as well as their studies by XPS, was carried out with the financial support of the Russian Science Foundation (project no. 19-13-00172-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Koptyug.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Dedicated to the Anniversary of Academician Irina Petrovna Beletskaya

Translated by G. Kirakosyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skovpin, I.V., Sviyazov, S.V., Burueva, D.B. et al. Nonequilibrium Nuclear Spin States of Ethylene during Acetylene Hydrogenation with Parahydrogen over Immobilized Iridium Complexes. Dokl Phys Chem 512, 149–157 (2023). https://doi.org/10.1134/S0012501623600237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501623600237

Keywords:

Navigation