Skip to main content
Log in

Thermogravimetric Analysis of Carbon Sorbents Modified by Ammonium Bromide

  • CHEMISTRY
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The thermal stability of carbon sorbents modified by ammonium bromide is investigated. The sorbent is produced from D coal by alkaline activation at 800°C with 1 h holding, when the coal/KOH mass ratio is 1.0. This sorbent is microporous, with a high specific surface (1340 m2/g). The sorbent is modified by steeping with ammonium bromide solution of different concentrations (1, 2, and 4%). Such modification changes all the textural characteristics of the sorbent. The specific surface SBET and total pore volume VΣ decrease. Thermogravimetric analysis establishes the temperature limits on oxidative pyrolysis of the sorbent samples: the ignition temperature and complete combustion temperature. Taking account of the time parameters, the ignition and combustion indices are calculated. It is found that increase in concentration of the ammonium bromide solution is accompanied by increase in the ignition temperature Tig of the samples and also the temperature T1 at which mass loss begins. In addition, the ignition index D and combustion index S increase. The results show that modification of the sorbents with ammonium bromide raises the threshold of oxidative pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Shpirt, M.Ya., Transformation of mercury and its compounds upon coal processing, Solid Fuel Chem., 2002, vol. 36, no. 5, pp. 58–70.

    Google Scholar 

  2. Yudovich, Ya.E. and Ketris, M.P., Mercury in coals: A serious ecological problem, Biosfera, 2009, vol. 1, no. 2, pp. 237–247.

    Google Scholar 

  3. Zharov, Yu., Meitov, E.S., Sharova, I.G., et al., Tsennye i toksichnye elementy v tovarnykh uglyakh Rossii. Spravochnik (Valuable and Toxic Elements in Product Coals of Russia: Reference Book), Moscow: Nedra, 1996.

  4. Kolesnikov, S.P., Rubinskaya, T.Ya., Strel’tsova, E.D., Leonova, M.Yu., Korshevets, I.K., Zykov, A.M., and Anichkov, S.N., Distribution of mercury in the combustion products of coal dust in boilers with liquid slag removal, Solid Fuel Chem., 2010, vol. 44, no. 1, pp. 50–55. https://doi.org/10.3103/s0361521910010106

    Article  Google Scholar 

  5. Song, G., Deng, R., Yao, Z., Chen, H., Romero, C., Lowe, T., Driscoll, G., Kreglow, B., Schobert, H., and Baltrusaitis, J., Anthracite coal-based activated carbon for elemental Hg adsorption in simulated flue gas: Preparation and evaluation, Fuel, 2020, vol. 275, p. 117921. https://doi.org/10.1016/j.fuel.2020.117921

    Article  CAS  Google Scholar 

  6. Sasmaz, E., Kirchofer, A., Jew, A.D., Saha, A., Abram, D., Jaramillo, T.F., and Wilcox, J., Mercury chemistry on brominated activated carbon, Fuel, 2012, vol. 99, pp. 188–196. https://doi.org/10.1016/j.fuel.2012.04.036

    Article  CAS  Google Scholar 

  7. Yang, H., Xu, Z., Fan, M., Bland, A., and Judkins, R., Adsorbents for capturing mercury in coal-fired boiler flue gas, J. Hazard. Mater., 2007, vol. 146, nos. 1–2, pp. 1–11. https://doi.org/10.1016/j.jhazmat.2007.04.113

    Article  CAS  PubMed  Google Scholar 

  8. De, M., Azargohar, R., Dalai, A., and Shewchuk, S., Mercury removal by bio-char based modified activated carbons, Fuel, 2013, vol. 103, pp. 570–578. https://doi.org/10.1016/j.fuel.2012.08.011

    Article  CAS  Google Scholar 

  9. Zeng, H., Jin, F., and Guo, J., Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon, Fuel, 2004, vol. 83, no. 1, pp. 143–146. https://doi.org/10.1016/s0016-2361(03)00235-7

    Article  Google Scholar 

  10. Geng, X., Duan, Yu., Zhao, S., Hu, J., and Zhao, W., Mechanism study of mechanochemical bromination on fly ash mercury removal adsorbent, Chemosphere, 2021, vol. 274, p. 129637. https://doi.org/10.1016/j.chemosphere.2021.129637

    Article  CAS  PubMed  Google Scholar 

  11. Yang, W., Liu, Z., Xu, W., and Liu, Ya., Removal of elemental mercury from flue gas using sargassum chars modified by NH4Br reagent, Fuel, 2018, vol. 214, pp. 196–206. https://doi.org/10.1016/j.fuel.2017.11.004

    Article  CAS  Google Scholar 

  12. Zhou, Q., Duan, Yu-F., Hong, Ya-G., Zhu, C., She, M., Zhang, J., and Wei, H.-Q., Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon, Fuel Process. Technol., 2015, vol. 134, pp. 325–332. https://doi.org/10.1016/j.fuproc.2014.12.052

    Article  CAS  Google Scholar 

  13. Mureddu, M., Dessì, F., Orsini, A., Ferrara, F., and Pettinau, A., Air- and oxygen-blown characterization of coal and biomass by thermogravimetric analysis, Fuel, 2018, vol. 212, pp. 626–637. https://doi.org/10.1016/j.fuel.2017.10.005

    Article  CAS  Google Scholar 

  14. Zheng, S., Hu, Yi., Wang, Z., and Cheng, X., Experimental investigation on ignition and burnout characteristics of semi-coke and bituminous coal blends, J. Energy Inst., 2020, vol. 93, no. 4, pp. 1373–1381. https://doi.org/10.1016/j.joei.2019.12.007

    Article  CAS  Google Scholar 

  15. Zhuikov, A.V. and Glushko, D.O., Combustion of coal with forest biomass in nonisothermal heating, Coke Chem., 2022, vol. 65, no. 8, pp. 308–315. https://doi.org/10.3103/S1068364X22080075

    Article  CAS  Google Scholar 

  16. Zhuikov, A.V. and Glushkov, D.O., Characteristics of the joint combustion of brown coal and sewage sludge under nonisothermal heating conditions, Solid Fuel Chem., 2022, vol. 56, no. 5, pp. 353–359. https://doi.org/10.3103/S0361521922050111

    Article  CAS  Google Scholar 

  17. Kozlov, A.N., Svishchev, D.A., Khudyakova, G.I., and Ryzhkov, A.F., A kinetic analysis of the thermochemical conversion of solid fuels (a review), Solid Fuel Chem., 2017, vol. 51, no. 4, pp. 205–213. https://doi.org/10.3103/S0361521917040061

    Article  CAS  Google Scholar 

  18. Zaripov, I.I., Vikhareva, I.N., Buylova, E.A., Berestova, T.V., and Mazitova, A.K., Additives to reduce the flammability of polymers, Nanotekhnol. Stroitel’stve, 2022, vol. 14, no. 2, pp. 156–161. https://doi.org/10.15828/2075-8545-2022-14-2-156-161

    Article  CAS  Google Scholar 

  19. Fomin, D.L., Mazina, L.A., and Deberdeev, R.Ya., Impact of bromine-containing flame retardants on polyvinyl chloride compound properties, Pozharovzryvobezopasnost’, 2012, vol. 21, no. 12, pp. 32–37. https://doi.org/10.18322/pvb.2012.21.12.32-37

    Article  Google Scholar 

  20. Khalturinskii, N.A. and Rudakova, T.A., Physical aspects of polymer combustion and the inhibition mechanism, Russ. J. Phys. Chem. B, 2008, vol. 2, no. 3, pp. 480–490. https://doi.org/10.1134/s1990793108030238

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was conducted on equipment at the Collective Use Center of the Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences.

We thank L.M. Khitsova for conducting the thermogravimetric analysis and V.Yu. Malysheva for performing the elemental analysis.

Funding

Financial support was provided within the framework of state funding for the Institute of Coal and Materials Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences (project 121031500194-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. I. Fedorova or I. Yu. Zykov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by B. Gilbert

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, N.I., Zykov, I.Y. Thermogravimetric Analysis of Carbon Sorbents Modified by Ammonium Bromide. Coke Chem. 66, 480–484 (2023). https://doi.org/10.3103/S1068364X23701107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X23701107

Navigation