Skip to main content
Log in

Essential Oil from Melaleuca alternifolia: Aromatic Profiling, Phytochemical Analysis and Assessment of Diverse Biological Activities

  • STORAGE AND PROCESSING OF AGRICULTURAL PRODUCTS
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

Melaleuca is a well-known genus of the Myrtaceae family, one of the major plant families with a high concentration of essential oils. The Australian tea tree (Melaleuca alternifolia), a genus of aromatic and herbaceous trees that belongs to the Myrtaceae family, is well known to produce herbal essential oils owing to the presence of therapeutic and medicinal elements in the plant’s by-products. In the present study, tea tree essential oil (TTEO) was extracted from Melaleuca alternifolia and was evaluated for its phytochemicals, antifungal, antimicrobial, antidiabetic, and anti-inflammatory activities. GC-FID analysis and fingerprint analysis were performed. Different antioxidant assays were performed like DPPH (1,1-diphenyl-2-picrylhydrazyl), ABTS (2,2-azinobis-3-ethylbenzothiazoline-6-sulphonic acid), nitric oxide radical, hydroxyl radical, iron-reducing potential, iron chelating activity. Antibacterial activity was observed by the disk diffusion method against gram-positive (G+) and gram-negative (G) bacteria. Antidiabetic and anti-inflammatory activities were also performed. Antifungal activity against “Aspergillosis” and “Mucormycosis” causing fungal strains was also evaluated. GC-FID revealed the presence of α-terpineol, a major component of TTEO, along with other bioactive components. The IC50 value for various assays was observed in the following order: Hydroxyl radical scavenging activity (7.4486), DPPH (34.0961), ABTS (38.9952), Nitric oxide radical scavenging activity (47.4052). The best antimicrobial activity was against Staphylococcus aureus (MTCC 3160) with an inhibition zone of 0.9 cm. TTEO showed strong anti-inflammatory and antidiabetic potential and can be employed as an antidiabetic agent due to its inhibitory effect on α-amylase activity. Based on these findings, it was concluded that TTEO can be widely employed across various sectors, including aromatherapy, herbal and allopathic medicine, cosmetics, and as a natural biocide, fungicide, and preservative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Bakkali, F., Averbeck, S., Averbeck, D., Zhiri, A., Baudoux, D., and Idaomar, M., Antigenotoxic effects of three essential oils in diploid yeast (Saccharomyces cerevisiae) after treatments with UVC radiation, 8-MOP plus UVA and MMS, Mutat. Res., 2006, vol. 606, pp. 27–38.

    Article  CAS  PubMed  Google Scholar 

  2. Fabricant, D.S. and Farnsworth, N.R., The value of plants used in traditional medicine for drug discovery, Environ. Health Perspect., 2001, vol. 109, pp. 69–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gyawali, R. and Ibrahim, S.A., Natural products as antimicrobial agents, Food Control, 2014, vol. 46, pp. 412–429.

    Article  CAS  Google Scholar 

  4. Wu, X., Yuan, J., Luo, A., Chen, Y., and Fan, Y., Drought stress and re-watering increase secondary metabolites and enzyme activity in Dendrobium moniliforme, Ind. Crops Prod., 2016, vol. 94, pp. 385–393.

    Article  CAS  Google Scholar 

  5. Mohamed, A.A. and Alotaibi, B.M., Essential oils of some medicinal plants and their biological activities: a mini review, J. Umm Al-Qura Univ. Appl. Sci., 2023, vol. 9, pp. 40–49.

    Google Scholar 

  6. Kar, S., Gupta, P., and Gupta, J., Essential oils: Biological activity beyond aromatherapy, Nat. Prod. Sci., 2018, vol. 24, pp. 139–147

    Article  CAS  Google Scholar 

  7. Ismail, S.M., Hassan, N.A., Wahba, T.F., and Shaker, N., Chemical composition and bioactivities of Melaleuca alternufolia essential oil and its main constituents against Spodoptera littoralis (Boisaduval, 1833), Bull. Natl. Res. Centre, 2022, vol. 46, p. 157.

    Article  Google Scholar 

  8. Mertas, A., Garbusińska, A., Szliszka, E., Jureczko, A., Kowalska, M., and Król, W., The influence of tea tree oil (Melaleuca alternifolia) on fluconazole activity against fluconazole-resistant Candida albicans strains, BioMed Res. Int., 2015, vol. 2015, p. 590470.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee, C.J., Chen, L.W., Chen, L.G., Chang, T.L., Huang, C.W., Huang, M.C., and Wang, C.C., Correlations of the components of tea tree oil with its antibacterial effects and skin irritation, J. Food Drug Anal., 2013, vol. 21, pp. 169–176

    Article  CAS  Google Scholar 

  10. Siddique, S., Parveen, Z., Butt, A., Chaudhary, M.N., and Akram, M., The essential oil of Melaleuca armillaris (Sol. ex Gaertn.) Sm. leaves from Pakistan: A potential source of eugenol methyl ether, Ind. Crops Prod., 2017, vol. 109, pp. 912–917

    Article  CAS  Google Scholar 

  11. Zhang, X., Guo, Y., Guo, L., Jiang, H., and Ji, Q., In vitro evaluation of antioxidant and antimicrobial activities of Melaleuca alternifolia essential oil, BioMed Res. Int., 2018, vol. 3, pp. 1–8

    Google Scholar 

  12. Yasin, M., Younis, A., Javed, T., Akram, A., Ahsan, M., Shabbir, R., Ali, M.M., Tahir, A., El-Ballat, E.M., and Sheteiwy, M.S., River tea tree oil: composition, antimicrobial and antioxidant activities, and potential applications in agriculture, Plants, 2021, vol. 10, p. 2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carson, C.F., Hammer, K.A., and Riley, T.V., Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties, Clin. Microbiol. Rev., 2006, vol. 19, pp. 50–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amrita Kaur, I. and Sharma, A.D., Underutilized plant Cymbopogan martinii derived essential oil is excellent source of bioactives with diverse biological activities, Russ. Agric. Res., 2023, vol. 49, pp. 100–117.

    Article  Google Scholar 

  15. Agnish, S., Sharma, A.D., and Kaur, I., Underutilized plant Cymbopogon pendulus derived essential oil is excellent source of bioactives with diverse biological activities, Russ. Agric. Res., 2022, vol. 48, pp. 55–68

    Google Scholar 

  16. Elmi, A., Ventrella, D., Barone, F., Carnevali, G., Filippini, G., Pisi, A., Benvenuti, S., Scozzoli, M., and Bacci, M.L., In vitro effects of tea tree oil (Melaleuca alternifolia essential oil) and its principal component terpinen-4-ol on swine spermatozoa, Molecules, 2019, vol. 24, p. 1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noumi, E., Snoussi, M., Hajlaoui, H., Trabelsi, N., Ksouri, R., Valentin, E., and Bakhrouf, A., Chemical composition, antioxidant and antifungal potential of Melaleuca alternifolia (tea tree) and Eucalyptus globulus essential oils against oral Candida species, J. Med. Plants Res., 2011, vol. 5, pp. 4147–4156.

    CAS  Google Scholar 

  18. Borotová, P., Galovičová, L., Vukovic, N.L., Vukic, M., Tvrdá, E., and Kačániová, M., Chemical and biological characterization of Melaleuca alternifolia essential oil, Plants (Basel), 2022, vol. 20, p. 558

    Article  Google Scholar 

  19. Nogueira, M.N.M., Aquino, S.G., Rossa Junior, C., and Spolidorio, D.M.P., Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1β, IL-6 and IL-10 on human macrophages, Inflamm. Res., 2014, vol. 63, pp. 769–778

    Article  CAS  PubMed  Google Scholar 

  20. Mylle, E., Codreanu, M.C., Boruc, J., and Russinova, E., Emission spectra profiling of fluorescent proteins in living plant cells, Plant Methods, 2013, vol. 9, p. 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, J.B., Sun, S.Q., Tang, X.D., Zhang, J.Z., and Zhou, Q., RETRACTED: Direct and simultaneous detection of organic and inorganic ingredients in herbal powder preparations by Fourier transform infrared microspectroscopic imaging, Spectrochim. Acta, Part A, 2016, vol. 165, pp. 176–182.

    Article  CAS  Google Scholar 

  22. Paulraj, K., Irudayaraj, V., Johnson, M., and Patric, D., Phytochemical and anti-bacterial activity of epidermal glands extract of Christella parasitica (L.) H. Lev., Asian Pac. J. Trop Biomed., 2011, vol. 1, pp. 8–11.

    Article  CAS  Google Scholar 

  23. Khan, R.A., Khan, M.R., Sahreen, S., and Ahmed, M., Assessment of flavonoid contents and in vitro antioxidant activity of Launaea procumbens, Chem. Central J., 2012, vol. 6, p. 43.

    Article  CAS  Google Scholar 

  24. Hepsibha, B.T., Sathiya, S., Babu, C.S., Premalakshmi, V., and Sekar, T., In vitro studies on antioxidant and free radical scavenging activities of Azima tetracantha Lam leaf extracts, Indian J. Sci. Technol., 2010. vol. 3, pp. 571–577.

    Article  Google Scholar 

  25. Obafemi, T.O., Akinmoladun, A.C., Olaleye, M.T., Onasanya, A., Komolafe, K.C., Falode, J.A., and Athayde, M.L., High performance liquid chromatography (HPLC) fingerprinting, mineral composition and in vitro antioxidant activity of methanol leaf extract of Synsepalum dulcificum (sapotaceae), J. Appl. Pharm. Sci., 2017, vol. 11, pp. 23–26.

    Google Scholar 

  26. Bendaha, H., Yu, L., Touzani, R., Souane, R., and Giaever, G., New azole antifungal agents with novel modes of action: Synthesis and biological studies of new tridentate ligands based on pyrazole and triazole, Eur. J. Med. Chem., 2011, vol. 46, pp. 4117–4124.

    Article  CAS  PubMed  Google Scholar 

  27. Joshi, S.C., Verma, A.R., and Mathela, C.S., Antioxidant and antibacterial activities of the leaf essential oils of Himalayan Lauraceae species, J. Chem. Toxicol., 2010, vol. 48, pp. 37–40

    Article  CAS  Google Scholar 

  28. Shah, G. and Dhawan, R.K., Antioxidant activity of methanol extract leaves of Melaleuca alternifolia (Maiden & Betche) Cheel, J. Mater. Environ. Sci., 2019, vol. 10, pp. 1286–1295.

    CAS  Google Scholar 

  29. Hou, W., Zhang, W., Chen, G., and Luo, Y., Optimization of extraction conditions for maximal phenolic, flavonoid and antioxidant activity from Melaleuca bracteata leaves using the response surface methodology, PLoS One, 2016, vol. 9, no. 11, p. e0162139.

    Article  Google Scholar 

  30. Siddique, S., Parveen, Z., Butt, A., Chaudhary, M.N., and Akram, M., The essential oil of Melaleuca armillaris (Sol. ex Gaertn.) Sm. leaves from Pakistan: A potential source of eugenol methyl ether, Ind. Crops Prod., 2017, vol. 109, pp. 912–917

    Article  CAS  Google Scholar 

  31. Kim, H.J., Chen, F., Wu, C., Wang, X., Chung, H.Y., and Jin, Z., Evaluation of antioxidant activity of Australian tea tree (Melaleuca alternifolia) oil and its components, J. Agric. Food Chem., 2004, vol. 52, pp. 2849–2854.

    Article  CAS  PubMed  Google Scholar 

  32. Miguel, M.G., Antioxidant and anti-inflammatory activities of essential oils: a short review, Molecules, 2010, vol. 15, pp. 9252–9287.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Caldefie-Chézet, F., Fusillier, C., Jarde, T., Laroye, H., Damez, M., Vasson, M.P., and Guillot, J., Potential anti-inflammatory effects of Melaleuca alternifolia essential oil on human peripheral blood leukocytes, Phytother. Res., 2006, vol. 20, pp. 364–370.

    Article  PubMed  Google Scholar 

  34. McCue, P., Kwon, Y.I., and Shetty, K., Anti-amylase, anti-glucosidase and anti-angiotensin I-converting enzyme potential of selected foods, J. Food Biochem., 2005, vol. 29, pp. 278–294.

    Article  CAS  Google Scholar 

  35. Shai, L.J., Masoko, P., Mokgotho, M.P., Magano, S.R., Mogale, A.M., Boaduo, N., and Eloff, J.N., Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa, S. Afr. J. Bot., 2010, vol. 76, no. 3, pp. 465–470.

    Article  Google Scholar 

  36. Kazeem, M.I., Adamson, J.O., and Ogunwande, I.A., Modes of inhibition of α -amylase and α -glucosidase by aqueous extract of Morinda lucida Benth leaf, Biomed. Res. Int., 2013, p. 527570.

  37. Kwon, Y.I., Apostolidis, E., and Shetty, K., Evaluation of pepper (Capsicum annuum) for management of diabetes and hypertension, J. Food Biochem., 2007, vol. 31, pp. 370–385.

    Article  CAS  Google Scholar 

  38. Puvača, N., Milenković, J., Galonja Coghill, T., Bursić, V., Petrović, A., Tanasković, S., Pelić, M., Ljubojević Pelić, D., and Miljković, T., Antimicrobial activity of selected essential oils against selected pathogenic bacteria: in vitro study, Antibiotics, 2021, vol. 10, p. 546

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ergin, A. and Arikan, S., Comparison of microdilution and disc diffusion methods in assessing the in vitro activity of fluconazole and Melaleuca alternifolia (tea tree) oil against vaginal Candida isolates, J. Chemother., 2002, vol. 14, pp. 465–472

    Article  CAS  PubMed  Google Scholar 

  40. Li, X., Shen, D., Zang, Q., Qiu, Y., and Yang, X., Chemical components and antimicrobial activities of tea tree hydrosol and their correlation with tea  tree oil, Nat. Prod. Commun., 2021, vol. 16, p. 1934578X211038390

  41. Su, Y.C., Ho, C.L., Wang, E.I., and Chang, S.T., Antifungal activities and chemical compositions of essential oils from leaves of four Eucalyptus, Taiwan J. For. Sci., 2006, vol. 21, pp. 49–61.

    CAS  Google Scholar 

  42. Cordeiro, L., Figueiredo, P., Souza, H., Sousa, A., Andrade-Júnior, F., Medeiros, D., Nóbrega, J., Silva, D., Martins, E., and Barbosa-Filho, J., Terpinen-4-Ol as an antibacterial and antibiofilm agent against Staphylococcus aureus, Int. J. Mol. Sci., 2020, vol. 21, p. 4531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Siramon, P. and Ohtani, Y., Antioxidative and antiradical activities of Eucalyptus camaldulensis leaf oils from Thailand, J. Wood Sci., 2007, vol. 53, pp. 498–504

    Article  CAS  Google Scholar 

  44. Ziółkowska-Klinkosz, M., Kedzia, A., Meissner, H.O., and Kedzia, A.W., Evaluation of the tea tree oil activity to anaerobic bacteria–in vitro study, Acta Pol. Pharm., 2016, vol. 73, pp. 389–394

    PubMed  Google Scholar 

  45. Hammer, K.A., Carson, C.F., and Riley, T.V., Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae, J. Antimicrob. Chemother., 2004, vol. 53, pp. 1081–1085

    Article  CAS  PubMed  Google Scholar 

  46. Wróblewska, M., Szymańska, E., and Winnicka, K., The influence of tea tree oil on antifungal activity and pharmaceutical characteristics of Pluronic® F-127 gel formulations with ketoconazole, Int. J. Mol. Sci., 2021, vol. 20, p. 11326

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. Narveer Singh for helping with wet lab experiments conducted at DST Fund for Improvement of S’T Infrastructure in Universities and Higher Educational Institutions laboratory.

Funding

The authors acknowledge support from the Department of Science and Technology (DST) of the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Dev Sharma.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.D., Kaur, I., Kaur, R. et al. Essential Oil from Melaleuca alternifolia: Aromatic Profiling, Phytochemical Analysis and Assessment of Diverse Biological Activities. Russ. Agricult. Sci. 49, 558–574 (2023). https://doi.org/10.3103/S1068367423050105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367423050105

Keywords:

Navigation