Skip to main content
Log in

On Turbulent Helicity in the Surface Layer of the Atmosphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Synchronous measurements of vorticity and velocity in the boundary layer of the atmosphere were carried out using the original three-component acoustic circulator developed at the Obukhov Institute of Physical Physics (IAP) in 2019–2020. The measurements were carried out in summer at the Tsimlyansk scientific station (in 2021 and 2022) at heights of 1.75 and 30 m. For different realizations, turbulent helicity has negative values on average, which is possibly due to the presence of local (breeze) winds. The spectra of turbulent helicity exhibit a slope close to –5/3, which corresponds to the transfer of helicity along the spectrum towards small scales (direct cascade). Spectrum slopes of –4/3 are also observed, as well as, in the low-frequency region, –1, associated with the convective component, wind shear, and submesoscale structures. The components of the turbulent vortex flow are calculated. The helicity values agree with the previously measured and theoretical estimates obtained for neutral conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Agoua, W., Favier, B., Delache, A., Briard, A., and Bos, W.J.T., Spontaneous generation and reversal of helicity in anisotropic turbulence, Phys. Rev. E, 2021, vol. 103, no. 6, p. L061101.

    Article  Google Scholar 

  2. Ali, S.Z. and Dey, S., Discovery of the zeroth law of helicity spectrum in the pre-inertial range of wall turbulence, Phys. Fluids, 2022, vol. 34, p. 071401.

    Article  Google Scholar 

  3. Belyan, A.V, Moiseev, S.S., and Chkhetiani, O.G., On turbulent viscosity in helical turbulence, Dokl. Akad. Nauk, 1994, vol. 334, no. 1, pp. 34–36.

    Google Scholar 

  4. Betchov, R., Semi-isotropic turbulence and helicoidal flows, Phys. Fluids, 1961, vol. 4, pp. 925–926.

    Article  Google Scholar 

  5. Bovsheverov, V.M., Gurvich, A.S., Kochetkov, A.N., and Lomadze, S.A., Measuring the frequency spectrum of small-scale velocity circulation in a turbulent flow, Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana, 1971, vol. 7, no. 4, pp. 371–376.

    Google Scholar 

  6. Brissaud, A., Frisch, U., Leorat, J., Lesieur, M., and Mazur, A., Helicity cascades in fully developed isotropic turbulence, Phys. Fluids, 1973, vol. 16, pp. 1363–1364.

    Article  Google Scholar 

  7. Chen, Q., Chen, S., and Eyink, G.L., The joint cascade of energy and helicity in three-dimensional turbulence, Phys. Fluids, 2003, vol. 15, pp. 361–374.

    Article  Google Scholar 

  8. Chkhetiani, O.G., On the helical structure of the Ekman boundary layer, Izv., Atmos. Ocean. Phys., 2001, vol. 37, no. 5, pp. 569–575.

    Google Scholar 

  9. Chkhetiani, O.G. and Gledzer, E.B., Helical turbulence with small-scale energy and helicity sources and external intermediate scale noises as the origin of large scale generation, Phys. A, 2017, vol. 486, pp. 416–433.

    Article  Google Scholar 

  10. Chkhetiani, O.G., Koprov, B.M., and Koprov, V.M., Vorticity and helicity flows in the atmospheric boundary layer, in Dinamika volnovykh i obmennykh protsessov v atmosfere (Dynamics of Wave and Exchange Processes in the Atmosphere), Moscow: GEOS, 2017, pp. 39–57.

  11. Chkhetiani, O.G., Kurgansky, M.V., and Vazaeva, N.V., Turbulent helicity in the atmospheric boundary layer, Boundary Layer Meteorol., 2018, vol. 168, no. 3, pp. 361–385.

    Article  Google Scholar 

  12. Etling, D., Some aspects of helicity in atmospheric flows, Beitr. Phys. Atmos., 1985, vol. 58, no. 1, pp. 88–100.

    Google Scholar 

  13. Hide, R., A note on helicity, Geophys. Astrophys. Fluid Dyn., 1975, vol. 7, no. 1, pp. 157–161.

    Article  Google Scholar 

  14. Hide, R., Superhelicity, helicity and potential vorticity, Geophys. Astrophys. Fluid Dyn., 1989, vol. 48, nos. 1–3, pp. 69–79.

    Article  Google Scholar 

  15. Koprov, B.M., From the history of boundary-layer studies at the Institute of Atmospheric Physics, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 3, pp. 282–292.

    Article  Google Scholar 

  16. Koprov, B.M., Azizyan, G.V., and Kalugin, V.V., Spectra of velocity circulation in the surface layer of the atmosphere, Boundary Layer Meteorol., 1988, vol. 42, nos. 1–2, pp. 137–143.

    Article  Google Scholar 

  17. Koprov, B.M., Kalugin, V.V., and Time, N.S., Turbulent eddy flow, Izv. Akad. Nauk: Fiz. Atmos. Okeana, 1994, vol. 30, no. 1, pp. 13–17.

    Google Scholar 

  18. Koprov, B.M., Koprov, V.M., Ponomarev, V.M., and Chkhetiani, O.G., Experimental studies of turbulent helicity and its spectrum in the atmospheric boundary layer, Dokl. Phys., 2005, vol. 50, no. 8, pp. 419–422.

    Article  Google Scholar 

  19. Koprov, B.M., Koprov, V.M., Kurgansky, M.V., and Chkhetiani, O.G., Helicity and potential vorticity in surface turbulence, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 6, pp. 565–575.

    Article  Google Scholar 

  20. Koprov, B.M., Koprov, V.M., Solenaya, O.A., Chkhetiani, O.G., and Shishov, E.A., Technique and results of measurements of turbulent helicity in a stratified surface layer, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 5, pp. 446–455.

    Article  Google Scholar 

  21. Kraichnan, R.H., Helical turbulence and absolute equilibrium, J. Fluid Mech., 1973, vol. 59, no. 4, pp. 745–752.

    Article  Google Scholar 

  22. Kurgansky, M.V., Relationship between helicity and potential vorticity in a compressible rotating fluid, Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana, 1989, vol. 25, no. 12, pp. 1326–1329.

    Google Scholar 

  23. Kurgansky, M.V., Vvedenie v krupnomasshtabnuyu dinamiku atmosfery (Adiabaticheskie invarianty i ikh primenenie) (Introduction to Large-Scale Atmospheric Dynamics (Adiabatic Invariants and Their Application)), St. Petersburg: Gidrometeoizdat, 1993.

  24. Kurgansky, M.V., Helicity in dynamic atmospheric processes, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 2, pp. 127–141.

    Article  Google Scholar 

  25. Kurgansky, M.V., Maksimenkov, L.O., Khapaev, A.A., and Chkhetiani, O.G., Vertical helicity flux as an index of general atmospheric circulation, Dokl. Earth Sci., 2018, vol. 479, no. 2, pp. 477–481.

    Article  Google Scholar 

  26. Lilly, D.K., The structure, energetics and propagation of rotating convective storms. Part II. Helicity and storm stabilization, J. Atmos. Sci., 1986, vol. 42, no. 2, pp. 126–140.

    Article  Google Scholar 

  27. Moffatt, H.K., The degree of knottedness of tangled vortex lines, J. Fluid Mech., 1969, vol. 35, no. 1, pp. 117–129.

    Article  Google Scholar 

  28. Moffatt, H.K., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge: Cambridge Univ. Press, 1978.

    Google Scholar 

  29. Moiseev, S.S. and Chkhetiani, O.G., Helical scaling in turbulence, J. Exp. Theor. Phys., 1996, vol. 83, pp. 192–205.

    Google Scholar 

  30. Novikov, E.A., Vortex flow, Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana, 1972, vol. 8, no. 7, pp. 459–462.

    Google Scholar 

  31. Obukhov, A.M., The temperature field structure in a turbulent flow, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz., 1949, vol. 13, no. 1, pp. 58–69.

    Google Scholar 

  32. Ponomarev, V.M. and Chkhetiani, O.G., Semiempirical model of the atmospheric boundary layer with parametrization of turbulent helicity effect, Izv., Atmos. Ocean. Phys., 2005, vol. 41, no. 4, pp. 418–432.

    Google Scholar 

  33. Shishov, E.A., Solenaya, O.A., Chkhetiani, O.G., Azizyan, G.V., and Koprov, V.M., Multipoint measurements of temperature and wind in the surface layer, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 3, pp. 254–263.

    Article  Google Scholar 

  34. Shukurov, A. and Subramanian, K., Astrophysical Magnetic Fields: From Galaxies to the Early Universe, Cambridge: Cambridge Univ. Press, 2021.

    Book  Google Scholar 

  35. Tan, Z. and Wu, R., Helicity dynamics of atmospheric flow, Adv. Atmos. Sci., 1994, vol. 11, no. 2, pp. 175–188.

    Article  Google Scholar 

  36. Taylor, G.I., Eddy motion in the atmosphere, Philos. Trans. R. Soc. A, 1915, vol. 215, pp. 1–26.

    Google Scholar 

  37. Taylor, G.I., The spectrum of turbulence, Proc. R. Soc. London A, 1938, vol. 164, no. 919, pp. 476–490.

    Article  Google Scholar 

  38. Tsvang, L.R., Studies of atmospheric turbulence at the Tsimlyansk research station of the Institute of Atmospheric Physics, USSR Academy of Science, Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana, 1985, vol. 21, no. 4, pp. 339–348.

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Solenaya.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The article was prepared on the basis of an oral report presented at the IV All-Russian Conference with international participation “Turbulence, Atmospheric and Climate Dynamics,” dedicated to the memory of Academician A.M. Obukhov (Moscow, November 22–24, 2022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solenaya, O.A., Shishov, E.A., Chkhetiani, O.G. et al. On Turbulent Helicity in the Surface Layer of the Atmosphere. Izv. Atmos. Ocean. Phys. 59, 595–604 (2023). https://doi.org/10.1134/S0001433823060117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823060117

Keywords:

Navigation