Skip to main content
Log in

Anomalous Selective Absorption of Smoke Aerosol during Forest Fires in Alaska in July–August 2019

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

According to the monitoring data of the optical and microphysical characteristics of smoke aerosol at AERONET stations during forest fires in the summer of 2019 in Alaska, the anomalous selective absorption of smoke aerosol has been detected in the visible and near-infrared spectral range from 440 to 1020 nm. With anomalous selective absorption, the imaginary part of the refractive index of smoke aerosol reached 0.315 at a wavelength of 1020 nm. A power-law approximation of the spectral dependence of the imaginary part of the refractive index with an exponent from 0.26 to 2.35 is proposed. It is shown that, for anomalous selective absorption, power-law approximations of the spectral dependences of the aerosol optical extinction and absorption depths are applicable with an Ångström exponent from 0.96 to 1.65 for the aerosol optical extinction depth and from 0.97 to –0.89 for the aerosol optical absorption depth, which reached 0.72. Single scattering albedo varied from 0.62 to 0.96. In the size distribution of smoke aerosol particles with anomalous selective absorption, the fine fraction of particles of condensation origin dominated. The similarity of the fraction of particles distinguished by anomalous selective absorption with the fraction of tar balls (TBs) detected by electron microscopy in smoke aerosol, which, apparently, arise during the condensation of terpenes and their oxygen-containing derivatives, is noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Adachi, K., Sedlacek, A.J. III, Kleinman, L., Huble, J.M., Shilling, J.E., Onash, T.B., Kinase, T., Sakata, K., Takahashi, J., and Buseck, P.R., Spherical tarball particles form through rapid chemical and physical changes of organic matter in biomass-burning smoke, Proc. Natl. Acad. Sci., 2019, vol. 116, no. 39, pp. 19336–19341.

    Article  Google Scholar 

  2. Alexander, D.T., Crozier, P.A., and Anderson, J.R., Brown carbon spheres in East Asian outflow and their optical properties, Science, 2008, vol. 321, pp. 833–836.

    Article  Google Scholar 

  3. Arshinov, M.Yu. and Belan, B.D., Study of the aerosol-size distribution during spring haze and forest fires, Opt. Atmos. Okeana, 2011, vol. 24, no. 6, pp. 468–474.

    Google Scholar 

  4. Bergstrom, R.W., Russell, P.B., and Hignett, P., Wavelength dependence the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo, J. Atmos. Sci., 2002, vol. 59, no. 3, pp. 567–577.

    Article  Google Scholar 

  5. Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New York: John Wiley and Sons, 2008.

    Google Scholar 

  6. Bondur, V.G. and Ginzburg, A.S., Emission of carbon-bearing gases and aerosols from natural fires on the territory of Russia based on space monitoring, Dokl. Earth Sci., 2016, vol. 466, no. 2, pp. 148–152.

    Article  Google Scholar 

  7. Chakrabarty, R.K., Moosmüller, H., Garro, M.A., Arnott, W.P., Walker, J., Susott, R.A., Rabbitt, R.E., Wold, C.E., Lincoln, E.N., and Hao, W.M., Emissions from the laboratory combustion of wildland fuels: Particle morphology and size, J. Geophys. Res., 2006, vol. 111, p. D07204.

    Article  Google Scholar 

  8. Chichibabin, A.E., Osnovnye nachala organicheskoi khimii (Fundamentals of Organic Chemistry), Moscow: Gos. nauchno-tekhn. izd. khim. lit., 1957.

  9. Chubarova, N., Nezval’, Y., Sviridenkov, M., Smirnov, A., and Slutsker, I., Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010, Atmos. Meas. Tech. Discuss., 2011, vol. 4, pp. 6351–6386.

    Google Scholar 

  10. Dubovik, O. and King, M.D., A flexible inversion algorithm for the retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 2000, vol. 105, no. D16, pp. 20673–20696.

    Article  Google Scholar 

  11. Dubovik, O., Smirnov, A., Holben, B.N., King, M.D., Kaufman, Y.J., Eck, T.F., and Slutsker, I., Accuracy assessment of aerosol optical properties retrieved from aerosol robotic network (AERONET) Sun and sky radiance measurements, J. Geophys. Res., 2000, vol. 105, pp. 9791–9806.

    Article  Google Scholar 

  12. Dubovick, O., Holben, B., Eck, T.F., Smirnov, A.V., Kaufman, Y.J., King, M.O., Tanre, D., and Slutsker, I., Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 2002, vol. 59, no. 3, pp. 590–608.

    Article  Google Scholar 

  13. Eck, T.F., Holben, B.N., Reid, J.S., Sinyuk, A., Hyer, E.J., Neil, N.T., Shaw, G.E., Vande Castle, J.R., Chapin, F.S., Dubovick, O., Smirnov, A.V., Vermote, E., Schafer, J.S., Giles, D., Slutsker, I., et al., Optical properties of boreal region biomass burning aerosols in Central Alaska and seasonal variation of aerosol optical depth at an arctic coastal site, J. Geophys. Res., 2009, vol. 114, D11201.

    Article  Google Scholar 

  14. Feng, Y., Ramanathan, V., and Katamarthi, V.R., Brown carbon: A significant atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 2013, vol. 13, pp. 8607–8621.

    Article  Google Scholar 

  15. Girroto, G., China, S., Bhadari, J., Gorkovski, K., Scanalo, B., Capek, T., Mainovski, A., Veghte, D., Kalkarni, G., Aiken, A., Dubey, M.K., and Mazzoleni, C., Fractal-like tar ball aggregates from wildfire smoke, Environ. Sci. Technol. Lett., 2018, vol. 5, pp. 360–365.

    Article  Google Scholar 

  16. Golitsyn, G.S., Shukurov, A.Kh., Ginzburg, A.S., Sutugin, A.G., and Andronova, A.V., Integrated study of microphysical and optical properties smoke aerosol, Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana, 1988, vol. 24, no. 3, pp. 227–233.

    Google Scholar 

  17. Gorchakov, G.I., Anikin, P.P, Volokh, A.A., Emilenko, A.S., Isakov, A.A., Kopeikin, V.M., Ponomareva, T.Ya., Semutnikova, E.G., Sviridenkov, M.A., and Shukurov, K.A., Studies of the smoky atmosphere composition over Moscow during peatbog fires in the summer–fall season of 2002, Izv., Atmos. Ocean. Phys., 2004, vol. 40, no. 3, pp. 323–336.

    Google Scholar 

  18. Gorchakov, G.I., Sviridenkov, M.A., Semutnikova, E.G., Chubarova, N.E., Holben, B.N., Smirnov, A.V., Emilenko, A.S., Isakov, A.A., Kopeikin, V.M., Karpov, A.V., Lezina, E.A., and Zadorozhnaya, O.S., Optical and microphysical parameters of the aerosol in the smoky atmosphere of the Moscow region in 2010, Dokl. Earth Sci., 2011, vol. 437, no. 2, pp. 513–517.

    Article  Google Scholar 

  19. Gorchakov, G.I., Sitnov, S.A., Sviridenkov, M.A., Semoutnikova, E.G., Emilenko, A.S., Isakov, A.A., Kopeikin, V.M., Karpov, A.V., Gorchakova, I.A., Verichev, K.S., Kurbatov, G.A., and Ponomareva, T.Ya., Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012, Int. J. Remote Sens., 2014, vol. 35, pp. 5698–5721.

    Google Scholar 

  20. Gorchakov, G.I., Vasiliev, A.V., Verichev, K.S., Semutnikova, E.G., and Karpov, A.V., Finely dispersed brown carbon in a smoggy atmosphere, Dokl. Earth Sci., 2016, vol. 471, no. 1, pp. 1158–1163.

    Article  Google Scholar 

  21. Gorchakov, G.I., Karpov, A.V., Pankratova, N.V., and Semoutnikova, E.G., Vasiliev, A.V., and Gorchakova, I.A., Brown carbon and black carbon in the smoky atmosphere during boreal forest fires, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 875–884.

    Article  Google Scholar 

  22. Gorchakov, G.I., Golitsyn, G.S., Sitnov, S.A., Karpov, A.V, Gorchakova, I.A., Gushchin, R.A., and Datsenko, O.I., Large-scale haze over Eurasia in July 2016, Dokl. Earth Sci., 2018a, vol. 482, no. 1, pp. 1212–1215.

    Article  Google Scholar 

  23. Gorchakov, G.I., Sitnov, S.A., Karpov, A.V., Kopeikin, V.M., Gorchakova, I.A., Isakov, A.A., Guschin, R.A., Datsenko, O.I., and Ponomareva, T.Ya., Siberian smoke haze over Europe in July 2016, Proc. SPIE, 2018b, vol. 10833, p. 1083300.

    Google Scholar 

  24. Gorchakov, G.I., Sitnov, S.A., Karpov, A.V., Gorchakova, I.A., Gushchin, R.A., and Datsenko, O.I., Eurasian large-scale hazes in summer 2016, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 3, pp. 261–270.

    Article  Google Scholar 

  25. Green, H. and Lane, W., Particulate Clouds: Dusts, Smoke and Mists, Princeton, N.J.: Van Nostrand, 1964; Leningrad: Khimiya, 1969.

  26. Hand, J.L., Malm, W.C., Laskin, A., Day, D., Lee, T.B., Wang, C., Carrico, C., Carrillo, J., Cowin, J.P., Collett, J., Jr., and Iedema, M.J., Optical, physical, and chemical properties of tar balls observed during the Yosemite aerosol characterization study, J. Geophys. Res.: Atmos., 2005, vol. 110, pp. 1–14.

    Article  Google Scholar 

  27. Hoffer, A., Kiss, G., Blazsó, M., and Gelencsér, A., Chemical characterization of humic-like substances (HULI-S) formed from a lignin-type precursor in model cloud water, Geophys. Res. Lett., 2004, vol. 31, no. 6, p. Z06115.

    Article  Google Scholar 

  28. Hoffer, A., Tóth, A., Nyirő-Kósa, I., Pósfai, M., and Gelencsér, A., Light absorption properties of laboratory-generated tar ball particles, Atmos. Chem. Phys., 2016, vol. 16, pp. 239–246.

    Article  Google Scholar 

  29. Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, N., Lavenu, F., Jankowiak, I., and Smirnov, A., AERONET: A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 1998, vol. 66, pp. 1–16.

    Article  Google Scholar 

  30. Konovalov, I.B., Beekmann, M., Berezin, E.V., Petetin, H., Mielonen, T., Kuznetsova, I.N., and Andreae, M.A., The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: A modeling case study of the 2010 mega-fire event in Russia, Atmos. Chem. Phys., 2015, vol. 15, pp. 13269–13297.

    Article  Google Scholar 

  31. Konovalov, I.B., Beekmann, M., Golovushkin, N.A., and Andrea, M.O., Nonlinear behavior of organic aerosol in biomass burning plumes: A microphysical model analysis, Atmos. Chem. Phys. Discuss., 2019, vol. 19, pp. 12091–12119.

    Article  Google Scholar 

  32. Kozlov, V.S., Yausheva, E.P., Terpugova, S.A., Panchenko, M.V., Chertnov, D.G., and Shmargunov, V.P., Optical–microphysical properties of smoke haze from Siberian forest fires in summer 2012, Int. J. Remote Sens., 2014, vol. 35, no. 15, pp. 5722–5741.

    Google Scholar 

  33. Li, C., He, Q., Schade, J., Passig, J., Zimmermann, R., Meidan, D., Laskin, A., and Rudich, Y., Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging, Atmos. Chem. Phys., 2019, vol. 19, pp. 139–163.

    Article  Google Scholar 

  34. Masson-Delmotte V., Zhai P., Portner H.O. et al., IPCC, 2018: Summary for Policymakers. In Global Warming of 1.5C. Geneva, Switzerland: World Meteorological Organization. 2018.

    Google Scholar 

  35. Mokhov, I.I. and Gorchakova, I.A., Radiation and temperature effects of summer fires in 2002 in the Moscow region, Dokl. Earth Sci., 2005, vol. 400, no. 1, pp. 160–163.

    Google Scholar 

  36. Nikonovas, T., North, P.R.J., and Doerr, S.H., Smoke aerosol properties and ageing effects for northern temperate and boreal regions derived from AERONET source and age attribution, Atmos. Chem. Phys., 2015, vol. 15, pp. 7929–7943.

    Article  Google Scholar 

  37. Panchenko, M.V., Zhuravleva, T.B., Kozlov, V.S., Nasrtdinov, I.M., Pol’kin, V.V., Terpugova, S.A., and Chernov, D.G., Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data, Russ. Meteorol. Hydrol., 2016, vol. 41, no. 2, pp. 104–111.

    Article  Google Scholar 

  38. Posfai, M., Simonics, R., Li, J., Hobbs, P.V., and Buseck, P.R., Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles, J. Geophys. Res.: Atmos., 2003, vol. 108, no. D13, pp. 1–13.

    Article  Google Scholar 

  39. Posfai, M., Gelencser, A., Simonics, R., Arato, K., Li, J., Hobbs, P.V., and Buseck, P.R., Atmospheric tar balls: particles from biomass and biofuel burning, J. Geophys. Res.: Atmos., 2004, vol. 109, p. D06213.

    Article  Google Scholar 

  40. Russell, P.B., Redemann, J., Schmid, B., Bergstrom, R.W., Livingston, J.M., McIntosh, D.M., Ramirez, S.A., Hartley, S., Hobbs, P.V., Quinn, P.K., Carrico, C.M., Rood, M.J., Ostrom, E., Noon, K.J., von Houningen-Huene, W., and Remer, L., Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments, J. Atmos. Sci., 2002, vol. 59, no. 3, pp. 609–619.

    Article  Google Scholar 

  41. Sayer, A.M., Hsu, N.C., Eck, T.F., Smirnov, A., and Holben, B.N., AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth, Atmos. Chem. Phys., 2014, vol. 14, no. 20, pp. 11493–11523.

    Article  Google Scholar 

  42. Sedlacek, A.J. III, Buseck, P.R., Adachi, K., Onasch, T.B., Springston, S.K., and Kleinman, J., Formation and evolution of tar balls from northwestern US wildfires, Atmos. Chem. Phys., 2018, vol. 18, no. 15, pp. 11289–11301.

    Article  Google Scholar 

  43. Seinfeld, J.H. and Pandis, S.N., From Air Pollution to Climate Change, New York: Wiley and Sons, 1998.

    Google Scholar 

  44. Sinyuk, A., Holben, B.N., Eck, T.F., Giles, D.M., Slutsker, I., Korkin, S., Schafer, J.S., Smirnov, A., Sorokin, M., and Lyapustin, A., The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2, Atmos. Meas. Tech., 2020, vol. 13, pp. 3375–3411.

    Article  Google Scholar 

  45. Vinogradova, A.A., Smirnov, N.S., and Korotkov, V.N., Anomalous wildfires in 2010 and 2012 on the territory of Russia and supply of black carbon to the Arctic, Atmos. Oceanic Opt., 2016, vol. 29, no. 6, pp. 545–550.

    Article  Google Scholar 

  46. Yu, Y., Dunne, J.P., Shevliakova, E., Ginoux, P., Malyshev, S., John, J.G., and Krasting, J.P., Increased risk of the 2019 Alaskan July fires due to anthropogenic activity, Bull. Am. Meteorol. Soc., 2021, vol. 102, no. 1, pp. S1–S7.

    Article  Google Scholar 

  47. Zhuravleva, T.B., Kabanov, D.M., Nasrtdinov, I.M., Russkova, T.V., Sakerin, S.M., Smirnov, A., and Holben, B.N., Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012, Atmos. Meas. Tech., 2017, vol. 10, no. 1, pp. 179–198.

    Article  Google Scholar 

  48. Zuev, V.E. and Krekov, G.M., Opticheskie modeli atmosfery (Optical Models of the Atmosphere), Leningrad: Gidrometeoizdat, 1986.

Download references

ACKNOWLEDGMENTS

We thank the AERONET team for the opportunity to use monitoring data, G.S. Golitsyn for useful advice, O.G. Chkhetiani and A.S. Ginzburg for discussing the results, and an anonymous reviewer for constructive comments.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Gorchakov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorchakov, G.I., Kopeikin, V.M., Gushchin, R.A. et al. Anomalous Selective Absorption of Smoke Aerosol during Forest Fires in Alaska in July–August 2019. Izv. Atmos. Ocean. Phys. 59, 655–666 (2023). https://doi.org/10.1134/S000143382306004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382306004X

Keywords:

Navigation