Skip to main content
Log in

Response of the Tropospheric Dynamics to Extreme States of the Stratospheric Polar Vortex during ENSO Phases in Idealized Model Experiments

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Extreme states of the stratospheric polar vortex (SPV) affect the average position of the main propagation trajectories of synoptic vortices in the Northern Hemisphere over a time period from 2 weeks to 2 months. This time scale is considered one of the most difficult periods in forecasting. Based on the analysis of data from idealized numerical experiments on the Isca platform, we have studied the processes of formation of anomalous positions of storm tracks in the Atlantic–European region as a response to sudden stratospheric warmings (SSWs) and events of extremely strong SPV during various phases of the El Niño Southern Oscillation (ENSO). It is shown that in winter it is impossible to unambiguously talk about the southward displacement of the Atlantic storm track during El Niño events without taking into account the intensity of SPV. The intensity of SPV, expressed as the zonal component of wind speed, averaged along 60° N at the level of 10 hPa, has its maximum predictive potential during El Niño.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ambaum, M.H.P. and Hoskins, B., The NAO troposphere–stratosphere connection, J. Clim., 2002, vol. 15, no. 14, pp. 1969–1978.

    Article  Google Scholar 

  2. Anstey, J.A., Scinocca, J.F., and Keller, M., Simulating the QBO in an atmospheric general circulation model: Sensitivity to resolved and parameterized forcing, J. Atmos. Sci., 2016, vol. 73, no. 4, pp. 1649–1665.

    Article  Google Scholar 

  3. Asbaghi, G., Joghataei, M., and Mohebalhojeh, A.R., Impacts of the QBO on the North Atlantic and Mediterranean storm tracks: An energetic perspective, Geophys. Res. Lett., 2017, vol. 44, no. 2, pp. 1060–1067.

    Article  Google Scholar 

  4. Baldwin, M.P. and Dunkerton, T.J., Stratospheric harbingers of anomalous weather regimes, Science, 2001, vol. 294, no. 5542.

  5. Baldwin, M.P. and Thompson, D.W.J., A critical comparison of stratosphere–troposphere coupling indices, Q. J. R. Meteorol. Soc., 2009, vol. 135, no. 644, pp. 1661–1672.

    Article  Google Scholar 

  6. Baldwin, M.P., Thompson, D.W.J., Shuckburgh, E.F., et al., Weather from the stratosphere?, Science, 2003, vol. 301, no. 5631, pp. 317–319.

    Article  Google Scholar 

  7. Blackmon, M.L., A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere, J. Atmos. Sci., 1976, vol. 33, no. 8, pp. 1607–1623.

    Article  Google Scholar 

  8. Blackmon, M.L., Wallace, J.M., Lau, N.-C., et al., An observational study of the Northern Hemisphere wintertime circulation, J. Atmos. Sci., 1977, vol. 34, no. 7, pp. 1040–1053.

    Article  Google Scholar 

  9. Blackmon, M.L., Lee, Y.H., and Wallace, J.M., Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales, J. Atmos. Sci., 1984, vol. 41, no. 6, pp. 961–980.

    Article  Google Scholar 

  10. Butler, A.H., Seidel, D.J., Hardiman, S.C., et al., Defining sudden stratospheric warmings, Bull. Am. Meteorol. Soc., 2015, vol. 96, no. 11, pp. 1913–1928.

    Article  Google Scholar 

  11. Chang, E., Lee, S., and Swanson, K., Storm track dynamics, J. Clim., 2002, vol. 15, pp. 2163–2182.

    Article  Google Scholar 

  12. Chang, E.K.M., Guo, Y., Xia, X., and Zheng, M., Storm-track activity in IPCC AR4/CMIP3 model simulations, J. Clim., 2013, vol. 26, no. 1, pp. 246–260.

    Article  Google Scholar 

  13. Charlton, A.J. and Polvani, L.M., A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks, J. Clim., 2007, vol. 20, no. 3, pp. 449–469.

    Article  Google Scholar 

  14. Domeisen, D.I.V., Garfinkel, C.I., and Butler, A.H., The teleconnection of El Niño Southern Oscillation to the stratosphere, Rev. Geophys., 2019, vol. 57, no. 1, pp. 5–47.

    Article  Google Scholar 

  15. Duchon, C.E., Lanczos filtering in one and two dimensions, J. Appl. Meteorol., 1979, vol. 18, pp. 1016–1022.

    Article  Google Scholar 

  16. Fink, A.H., Brücher, T., Ermert, V., et al., The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change, Nat. Hazards Earth Syst. Sci., 2009, vol. 9, no. 2, pp. 405–423.

    Article  Google Scholar 

  17. Fortuin, J.P.F. and Langematz, U., Update on the global ozone climatology and on concurrent ozone and temperature trends, Proc. SPIE, 1995, vol. 2311, pp. 207–216.

    Article  Google Scholar 

  18. Geophysical Fluid Dynamics Laboratory. https://www.gfdl.noaa.gov.

  19. Graff, L.S. and LaCasce, J.H., Changes in the extratropical storm tracks in response to changes in SST in an AGCM, J. Clim., 2012, vol. 25, no. 6, pp. 1854–1870.

    Article  Google Scholar 

  20. Gushchina, D., Kolennikova, M., Dewitte, B., Yeh, S.-W., On the relationship between ENSO diversity and the ENSO atmospheric teleconnection to high-latitudes, Int. J. Climatol., 2022, vol. 42, no. 2, pp. 1303–1325.

    Article  Google Scholar 

  21. Held, I.M., Lyons, S.W., and Nigam, S., Transients and the extratropical response to El Niño, J. Atmos. Sci., 1989, vol. 46, no. 1, pp. 163–174.

    Article  Google Scholar 

  22. Hitchcock, P. and Simpson, I.R., The downward influence of stratospheric sudden warmings, J. Atmos. Sci., 2014, vol. 71, no. 10, pp. 3856–3876.

    Article  Google Scholar 

  23. Horel, J.D. and Wallace, J.M., Planetary-scale atmospheric phenomena associated with the southern oscillation, Mon. Weather. Rev., 1981, vol. 109, no. 4, pp. 813–829.

    Article  Google Scholar 

  24. Hoskins, B.J. and Karoly, D.J., The steady linear response of a spherical atmosphere to thermal and orographic forcing, J. Atmos. Sci., 1981, vol. 38, no. 6, pp. 1179–1196.

    Article  Google Scholar 

  25. Hoskins, B.J. and Pearce, R., Large-Scale Dynamical Processes in the Atmosphere, London–New York: Academic Press, 1983.

    Google Scholar 

  26. Hoskins, B.J. and Valdes, P.J., On the existence of storm-tracks, J. Atmos. Sci., 1990, vol. 47, no. 15, pp. 1854–1864. https://www.gfdl.noaa.gov/model-development.

    Article  Google Scholar 

  27. Hurrell, J.W., Hack, J.J., Shea, D., et al., A new sea surface temperature and sea ice boundary dataset for the community atmosphere model, J. Clim., 2008, vol. 21, no. 19, pp. 5145–5153.

    Article  Google Scholar 

  28. Jucker, M. and Gerber, E.P., Untangling the annual cycle of the tropical tropopause layer with an idealized moist model, J. Clim., 2017, vol. 30, no. 18, pp. 7339–7358.

    Article  Google Scholar 

  29. Karpechko, A.Yu., Hitchcock, P., Peters, D.H.W., and Schneidereit, A., Predictability of downward propagation of major sudden stratospheric warmings, Q. J. R. Meteorol. Soc., 2017, vol. 143, no. 704, pp. 1459–1470.

    Article  Google Scholar 

  30. Kidston, J., Scaife, A.A., Hardiman, S.C., et al., Stratospheric influence on tropospheric jet streams, storm tracks and surface weather, Nat. Geosci., 2015, vol. 8, no. 6, pp. 433–440.

    Article  Google Scholar 

  31. Kolennikova, M.A., Vargin, P.N., and Gushchina, D.Yu., Interrelations between El Niño indices and major characteristics of polar stratosphere according to CMIP5 models and reanalysis, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 6, pp. 351–364.

    Article  Google Scholar 

  32. Kolstad, E.W., Breiteig, T., and Scaife, A.A., The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere, Q. J. R. Meteorol. Soc., 2010, vol. 136, no. 649, pp. 886–893.

    Article  Google Scholar 

  33. Kretschmer, M., Cohen, J., Matthias, V., et al., The different stratospheric influence on cold-extremes in Eurasia and North America, NPJ Clim. Atmos. Sci., 2018, vol. 1, no. 1, p. 44.

    Article  Google Scholar 

  34. Kug, J.S., Jin, F.F., and An, S.I., Two types of El Niño events: Cold tongue El Niño and warm pool El Niño, J. Clim., 2009, vol. 22, no. 6, pp. 1499–1515.

    Article  Google Scholar 

  35. Leathers, D.J., Yarnal, B., and Palecki, M.A., The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations, J. Clim., 1991, vol. 4, no. 5, pp. 517–528.

    Article  Google Scholar 

  36. L’Heureux, M.L. and Thompson, D.W.J., Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation, J. Clim., 2006, vol. 19, no. 2, pp. 276–287.

    Article  Google Scholar 

  37. Lu, J., Chen, G., and Frierson, D.M.W., Response of the zonal mean atmospheric circulation to El Niño versus global warming, J. Clim., 2008, vol. 21, no. 22, pp. 5835–5851.

    Article  Google Scholar 

  38. Martineau, P. and Son, S.W., Onset of circulation anomalies during stratospheric vortex weakening events: The role of planetary-scale waves, J. Clim., 2015, vol. 28, no. 18, pp. 7347–7370.

    Article  Google Scholar 

  39. Nerushev, A.F., Visheratin, K.N., and Ivangorodsky, R.V., Dynamics of high-altitude jet streams from satellite measurements and their relationship with climatic parameters and large-scale atmospheric phenomena, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 9, pp. 1198–1209.

    Article  Google Scholar 

  40. Orlanski, I., Poleward deflection of storm tracks, J. Atmos. Sci., 1998, vol. 55, no. 16, pp. 2577–2602.

    Article  Google Scholar 

  41. Rayner, N.A., Parker, D.E., Horton, E.B., et al., Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res.: Atmos., 2003, vol. 108, no. D14.

  42. Reynolds, R.W., Smith, T.M., Liu, C., et al., Daily high-resolution-blended analyses for sea surface temperature, J. Clim., 2007, vol. 20, no. 22, pp. 5473–5496.

    Article  Google Scholar 

  43. Sampe, T., Nakamura, H., Goto, A., and Ohfuchi, W., Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet, J. Clim., 2010, vol. 23, no. 7, pp. 1793–1814.

    Article  Google Scholar 

  44. Santoso, A., Mcphaden, M., and Cai, W., The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño, Rev. Geophys., 2017, vol. 55, no. 4, pp. 1079–1129.

    Article  Google Scholar 

  45. Schneidereit, A., Schubert, S., Vargin, P., Lunkeit, F., Zhu, X., Peters, D., and Fraedrich, K., Large scale flow and the longlasting blocking high over Russia: Summer 2010, Mon. Weather Rev., 2012, vol. 140, pp. 2967–2981.

    Article  Google Scholar 

  46. Seager, R., Harnik, N., Kushnir, Y., et al., Mechanisms of hemispherically symmetric climate variability, J. Clim., 2003, vol. 16, no. 18, pp. 2960–2978.

    Article  Google Scholar 

  47. Sobaeva, D., Zyulyaeva, Y., and Gulev, S., ENSO and PDO effect on stratospheric dynamics in Isca numerical experiments, Atmosphere, 2023, vol. 14, no. 459. https://doi.org/10.3390/atmos14030459

  48. Sun, C., Li, J., and Ding, R., Strengthening relationship between ENSO and western Russian summer surface temperature, Geophys. Res. Lett., 2016, vol. 43, pp. 843–851.

    Article  Google Scholar 

  49. Thomson, S.I. and Vallis, G.K., Atmospheric response to SST anomalies. Part I: Background-state dependence, teleconnections, and local effects in winter, J. Atmos. Sci., 2018, vol. 75, no. 12, pp. 4107–4124.

    Article  Google Scholar 

  50. Tilinina, N., Gulev, S.K., Rudeva, I., and Koltermann, P., Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses, J. Clim., 2013, vol. 26, no. 17, pp. 6419–6438.

    Article  Google Scholar 

  51. Trenberth, K.E., The definition of El Niño, Bull. Am. Meteorol. Soc., 1997, vol. 78, no. 12, pp. 2771–2778.

    Article  Google Scholar 

  52. Trenberth, K.E., Branstator, G.W., Karoly, D., et al., Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures, J. Geophys. Res.: Oceans, 1998, vol. 103, no. C7, pp. 14291–14324.

    Article  Google Scholar 

  53. Ulbrich, U., Brücher, T., Fink, A.H., et al., The central European floods of August 2002: Part 1. Rainfall periods and flood development, Weather, 2003, vol. 58, no. 10, pp. 371–377.

    Article  Google Scholar 

  54. Vallis, G.K., Colyer, G., Geen, R., et al., Isca, v1. 0: A framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity, Geosci. Model Dev., 2018, vol. 11, no. 3, pp. 843–859.

    Article  Google Scholar 

  55. Vargin, P.N. and Medvedeva, I.V., Temperature and dynamical regimes of the northern hemisphere extratropical atmosphere during sudden stratospheric warming in winter 2012–2013, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 1, pp. 12–29.

    Article  Google Scholar 

  56. Vargin, P.N., Martynova, P.N., Volodin, E.M., and Kostrykin, S.V., Investigation of boreal storm tracks in historical simulations of INM CM5 and reanalysis data, IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 386, no. 1, p. 012007.

  57. White, I., et al., The downward influence of sudden stratospheric warmings: Association with tropospheric precursors, J. Clim., 2019, vol. 32, no. 1, pp. 85–108.

    Article  Google Scholar 

  58. Yin, J.H., A consistent poleward shift of the storm tracks in simulations of 21st century climate, Geophys. Res. Lett., 2005, vol. 32, no. 18.

Download references

Funding

This work was carried out with financial support from the Russian Science Foundation as part of scientific project no. 22-27-00655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sobaeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The article was prepared on the basis of an oral report presented at the IV All-Russian Conference with International Participation “Turbulence, Dynamics of the Atmosphere and Climate,” dedicated to the memory of Academician A.M. Obukhov (Moscow, November 22–24, 2022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyulyaeva, Y.A., Sobaeva, D.A. & Gulev, S.K. Response of the Tropospheric Dynamics to Extreme States of the Stratospheric Polar Vortex during ENSO Phases in Idealized Model Experiments. Izv. Atmos. Ocean. Phys. 59, 624–635 (2023). https://doi.org/10.1134/S0001433823060130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823060130

Keywords:

Navigation