Skip to main content
Log in

Variational Data Assimilation for the Sea Thermodynamics Model and Sensitivity of Marine Characteristics to Observation Errors

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The methodology of variational assimilation of observational data for the reconstruction of the initial state and heat fluxes for the mathematical model of sea thermodynamics is presented. An algorithm is developed for estimating the sensitivity of a model solution to errors in observational data. The calculation of the gradient of the response function of the model solution is based on the use of the Hessian of the cost functional. The results of numerical experiments for the Black Sea dynamics model developed at the Institute of Numerical Mathematics, Russian Academy of Sciences, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Agoshkov, V.I., Metody optimal’nogo upravleniya i sopryazhennykh uravnenii v zadachakh matematicheskoi fiziki (Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics), Moscow: IVM RAN, 2003.

  2. Agoshkov, V.I., Gusev, A.V., Diansky, N.A., and Oleinikov, R.V., An algorithm for the solution of the ocean hydrothermodynamics problem with variational assimilation of the sea level function data, Russ. J. Numer. Anal. Math. Modell., 2007, vol. 22, no. 2, pp. 133–161.

    Article  Google Scholar 

  3. Agoshkov, V.I., Parmuzin, E.I., and Shutyaev V.P., Numerical algorithm for variational assimilation of sea surface temperature data, Comput. Math. Math. Phys., 2008, vol. 48, no. 8, pp. 1293–1312.

    Article  Google Scholar 

  4. Agoshkov, V.I., Parmuzin, E.I., and Shutyaev, V.P., Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 6, pp. 592–602.

    Article  Google Scholar 

  5. Agoshkov, V.I., Shutyaev, V.P., Parmuzin, E.I., Zakharova, N.B., Sheloput, T.O., and Lezina, N.R., Variation data assimilation in the mathematical model of the Black Sea dynamics, Phys. Oceanogr., 2019, vol. 26, no. 6, pp. 387–396.

    Article  Google Scholar 

  6. Asch, M., Bocquet, M., and Nodet, M., Data Assimilation: Methods, Algorithms, and Applications, Philadelphia, Penn.: SIAM, 2016.

    Book  Google Scholar 

  7. Cacuci, D.G., Sensitivity theory for nonlinear systems: II. Extensions to additional classes of responses, J. Math. Phys., 1981, vol. 22, pp. 2803–2812.

    Article  Google Scholar 

  8. Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G., Data assimilation in the geosciences: An overview of methods, issues, and perspectives, WIREs Clim. Change, 2018, vol. 9, pp. 1–80.

    Article  Google Scholar 

  9. Chen, F., Shapiro, G., and Thain, R., Sensitivity of sea surface temperature simulation by an ocean model to the resolution of the meteorological forcing, Int. Scholarly Res. Not.: Oceanogr., 2013, vol. 2013, p. 215715.

    Google Scholar 

  10. Cioaca, A., Sandu, A., and de Sturler, E., Efficient methods for computing observation impact in 4D-Var data assimilation, Comput. Geosci., 2013, vol. 17, pp. 975–990.

    Article  Google Scholar 

  11. Daescu, D.N., On the sensitivity equations of four-dimensional variational (4D-Var) data assimilation, Mon. Weather Rev., 2008, vol. 136, pp. 3050–3065.

    Article  Google Scholar 

  12. Diansky, N.A., Bagno, A.V., and Zalesny, V.B., Sigma model of global ocean circulation and its sensitivity to variations in wind stress, Izv., Atmos. Ocean. Phys., 2002, vol. 38, no. 4, pp. 477–494.

    Google Scholar 

  13. Le Dimet, F.X. and Talagrand, O., Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus, 1986, vol. 38A, pp. 97–110.

    Article  Google Scholar 

  14. Le Dimet, F.-X. and Shutyaev, V., On deterministic error analysis in variational data assimilation, Nonlinear Processes Geophys., 2005, vol. 12, pp. 481–490.

    Article  Google Scholar 

  15. Le Dimet, F.-X., Ngodock, H.E., Luong, B., and Verron, J., Sensitivity analysis in variational data assimilation, J. Meteorol. Soc. Jpn., 1997, vol. 75, no. 1B, pp. 245–255.

    Article  Google Scholar 

  16. Le Dimet, F.-X., Navon, I.M., and Daescu, D.N., Second-order information in data assimilation, Mon. Weather Rev., 2002, vol. 130, no. 3, pp. 629–648.

    Article  Google Scholar 

  17. Le Dimet, F.-X., Shutyaev, V., and Parmuzin, E., Sensitivity of functionals with respect to observations in variational data assimilation, Russ. J. Numer. Anal. Math. Modell., 2016, vol. 31, no. 2, pp. 81–91.

    Article  Google Scholar 

  18. Fletcher, S.J., Data Assimilation for the Geosciences: From Theory to Application, Amsterdam: Elsevier, 2017.

    Book  Google Scholar 

  19. Gejadze, I., Le Dimet, F.-X., and Shutyaev, V.P., On analysis error covariances in variational data assimilation, SIAM J. Sci. Comput., 2008, vol. 30, no. 4, pp. 1847–1874.

    Article  Google Scholar 

  20. Gejadze, I., Le Dimet, F.-X., and Shutyaev, V.P., On optimal solution error covariances in variational data assimilation problems, J. Comput. Phys., 2010, vol. 229, pp. 2159–2178.

    Article  Google Scholar 

  21. Gejadze, I., Shutyaev, V.P., Le Dimet, F.-X., Analysis error covariance versus posterior covariance in variational data assimilation, Q. J. R. Meteorol. Soc., 2013, vol. 139, pp. 1826–1841.

    Article  Google Scholar 

  22. Gualtieri, G., Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review, Renewable Sustainable Energy Rev., 2022, vol. 167, p. 112741.

    Article  Google Scholar 

  23. Hersbach, H., Bell, B., Berrisford, P., et al., The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 2020, vol. 146, pp. 1999–2049.

    Article  Google Scholar 

  24. Lions, J.L., Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles, Paris: Dunod, 1968.

    Google Scholar 

  25. Lupyan, E.A., Matveev, A.A., Uvarov, I.A., Bocharova, T.Yu., Lavrova, O.Yu., and Mityagina, M.I., See the Sea: A satellite service for studying ocean surface processes and phenomena, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 2, pp. 251–261.

    Google Scholar 

  26. Marchuk, G.I., Adjoint Equations and Analysis of Complex Systems, Dordrecht: Kluwer, 1995.

    Book  Google Scholar 

  27. Marchuk, G.I. and Zalesny, V.B., Modeling of the World Ocean circulation with the four-dimensional assimilation of temperature and salinity fields, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 1, pp. 15–29.

    Article  Google Scholar 

  28. Marchuk, G.I., Dymnikov, V.P., and Zalesny, V.B., Matematicheskie modeli v geofizicheskoi gidrodinamike i chislennye metody ikh realizatsii (Mathematical Models in Geophysical Fluid Dynamics and Numerical Methods for Their Implementation), Leningrad: Gidrometeoizdat, 1987.

  29. Mogensen, K., Balmaseda, M.A., Weaver, A.T., Martin, M., and Vidard, A., NEMOVAR: A variational data assimilation system for the NEMO ocean model, 2009, ECM-WF Tech. Memo. no. 120.

  30. Penenko, V.V., Metody chislennogo modelirovaniya atmosfernykh protsessov (Methods for the Numerical Simulation of Atmospheric Processes), Leningrad: Gidrometeoizdat, 1981.

  31. Penenko, V.V. and Obraztsov, N.N., A variational initialization method for the fields of meteorological elements, Meteorol. Gidrol., 1976, no. 11, pp. 1–11.

  32. Sasaki, Y.K., An objective analysis based on the variational method, J. Meteorol. Soc. Jpn., 1958, vol. 36, pp. 77–88.

    Article  Google Scholar 

  33. Shapiro, G.I. and Salim, M., How efficient is model-to-model data assimilation at mitigating atmospheric forcing errors in a regional ocean model?, J. Mar. Sci. Eng., 2023, vol. 11, no. 5, p. 935.

    Article  Google Scholar 

  34. Shutyaev, V.P., Operatory upravleniya i iteratsionnye algoritmy v zadachakh variatsionnogo usvoeniya dannykh (Control Operators and Iterative Algorithms in Problems in Variational Data Assimilation Problems), Moscow: Nauka, 2001.

  35. Shutyaev, V.P., Methods for observation data assimilation in problems of physics of atmosphere and ocean, Izv., Atmos. Ocean. Phys., 2019, vol. 55, pp. 17–31.

    Article  Google Scholar 

  36. Shutyaev, V.P. and Le Dimet, F.-X., Sensitivity of functionals of variational data assimilation problems, Dokl. Math., 2019, vol. 99, no. 3, pp. 295–298.

    Article  Google Scholar 

  37. Shutyaev, V., Zalesny, V., Agoshkov, V., Parmuzin, E., and Zakharova, N., 4D-Var data assimilation and sensitivity of ocean model state variables to observation errors, J. Mar. Sci. Eng., 2023, vol. 11, p. 1253.

    Article  Google Scholar 

  38. Tikhonov, A.N., Solution of ill-posed problems and the method of regularization, Dokl. Acad. Nauk SSSR, 1963, vol. 151, no. 3, pp. 501–504.

    Google Scholar 

  39. Zakharova, N.B., Verification of observational SST data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2016, vol. 13, no. 3, pp. 106–113.

    Article  Google Scholar 

  40. Zalesny, V.B., Diansky, N.A., Fomin, V.V., Moshonkin, S.N., and Demyshev, S.G., Numerical model of the circulation of the Black Sea and the Sea of Azov, Russ. J. Numer. Anal. Math. Modell., 2012, vol. 27, no. 1, pp. 95–112.

    Article  Google Scholar 

  41. Zalesny, V.B., Agoshkov, V.I., Shutyaev, V.P., Le Dimet, F.-X., and Ivchenko, B.O., Numerical modeling of ocean hydrodynamics with variational assimilation of observational data, Izv., Atmos. Ocean. Phys., 2016, vol. 52, pp. 431–442.

    Article  Google Scholar 

  42. Zalesny, V., Agoshkov, V., Shutyaev, V., Parmuzin, E., and Zakharova, N., Numerical modeling of marine circulation with 4D variational data assimilation, J. Mar. Sci. Eng., 2020, vol. 8, no. 503, pp. 1–19.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to a reviewer for useful remarks that made it possible to improve the presentation of results and exposition of the material in the paper.

Funding

This work was supported by the Russian Science Foundation, project nos. 19-71-20035 (investigations in Sections 1 and 3) and 20-11-20057 (investigations in Section 2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Shutyaev or E. I. Parmuzin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutyaev, V.P., Parmuzin, E.I. Variational Data Assimilation for the Sea Thermodynamics Model and Sensitivity of Marine Characteristics to Observation Errors. Izv. Atmos. Ocean. Phys. 59, 722–730 (2023). https://doi.org/10.1134/S0001433823060099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823060099

Keywords:

Navigation