Skip to main content
Log in

Structural phase transformation in single-crystal Fe–Cr–Ni alloy during creep deformation using molecular dynamics simulation and regression-based machine learning methodology

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Manipulation of creep properties and microstructural transformations at different temperatures and applied stresses depicts huge importance for the design and development of various grades of metals and alloys. Therefore, we have considered nano-size face-centered cubic (FCC) single crystal of Fe–Cr–Ni alloy to investigate creep response under a wide range of temperatures and pressure through molecular dynamics (MD) simulation and regression-based machine learning methodologies. From MD simulation, we have found the evolution of multiple rectangular blocks of body-centered cubic (BCC) crystal and layered FCC and HCP crystal during creep deformation under externally applied tensile load. Rectangular blocks and layered crystal structures corroborated with the secondary and tertiary stages of creep curves of Fe–Cr–Ni alloy, respectively. Machine learning methodology provides information to predict the creep properties and correlates data obtained from MD simulations. The results of this investigation will provide an understanding of the creep properties during thermal and mechanical processing, which will help to improve the performance of various grades of steel and other alloys.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Sastry D H 2005 Mater. Sci. Eng. A 409 67

    Article  Google Scholar 

  2. Tsai K Y, Tsai M H and Yeh J W 2013 Acta Mater. 61 4887

    Article  CAS  Google Scholar 

  3. Chou Y L, Yeh J W and Shih H C 2010 Corr. Sci. 52 3481

    Article  CAS  Google Scholar 

  4. Schuh B, Völker B, Todt J, Kormout K S, Schell N and Hohenwarter A 2018 Materials 11 662

    Article  Google Scholar 

  5. Maziasz P J and Jeremy T B 2012 Oak Ridge National Lab (ORNL) Oak Ridge TN (United States)

  6. Nandi S and Kumar S 2022 Bull. Mater. Sci. 45 252

    Article  CAS  Google Scholar 

  7. Toyama T, Nozawa Y, Van R W, Matsukawa Y, Hatakeyama M, Nagai Y et al 2012 J. Nuc. Mater. 425 71

    Article  CAS  Google Scholar 

  8. Ding R, Dai Z, Huang M, Yang Z, Zhang C and Chen H 2018 Acta Mater. 147 59

    Article  CAS  Google Scholar 

  9. Zhang C, Wang C, Zhang S L, Ding Y L, Ge Q L and Su J 2021 Mater. Sci. Eng. A 806 140763

    Article  CAS  Google Scholar 

  10. Mahesh B V, Raman R K S and Koch C C 2012 J. Mater. Sci. 47 7735

    Article  CAS  Google Scholar 

  11. Kumar S 2018 Mater. Chem. Phys. 208 41

    Article  CAS  Google Scholar 

  12. Andoh C N and Banini G K 2017 J. Appl. Sci. Tech. 22 551

    Google Scholar 

  13. Hou J, Li Q, Wu C and Zheng L 2019 Mater. 12 1010

    Article  CAS  Google Scholar 

  14. Tomota Y, Kuroki K, Mori T and Tamura I 1976 Mater. Sci. Eng. 24 85

    Article  CAS  Google Scholar 

  15. Latanision R M and Ruff A W 1971 Met. Trans. 2 505

    Article  CAS  Google Scholar 

  16. Hyde T H, Sun W and Williams J A 2007 Int. Mater. Rev. 52 213

    Article  CAS  Google Scholar 

  17. Bertero E, Hasegawa M, Staubli S, Pellicer E, Herrmann I K, Sort J et al 2018 Sur. Coat. Tech. 349 745

    Article  CAS  Google Scholar 

  18. Zhang Y and Yang J 2019 Calph. 67 101679

    Article  CAS  Google Scholar 

  19. Zeng Z, Zhao J, Zhou X, Li J and Liang B 2019 Chem. Phys. 517 126

    Article  CAS  Google Scholar 

  20. Mohammadzadeh R and Mohammadzadeh M 2017 Int. J. Mod. Sim. 37 227

    Google Scholar 

  21. Zhao L, Jing H, Xu L, Han Y, Xiu J and Qiao Y 2013 Mater. Des. 47 677

    Article  CAS  Google Scholar 

  22. Wróbel J S, Nguyen-Manh D, Lavrentiev M Y, Muzyk M and Dudarev S L 2015 Phys. Rev. B 91 024108

    Article  Google Scholar 

  23. Wollenberger H 1994 J. Nucl. Mater. 216 63

    Article  CAS  Google Scholar 

  24. Sinclair C W and Hoagland R G 2008 Acta Mater. 56 4160

    Article  CAS  Google Scholar 

  25. Enayati M H and Bafandeh M R 2008 J. Alloys Compd. 454 228

    Article  CAS  Google Scholar 

  26. Zhang Y, Jing H, Xu L, Zhao L, Han Y and Zhao Y 2017 Mater. Sci. Eng. A 686 102

    Article  CAS  Google Scholar 

  27. Molnar D, Sun X, Lu S, Li W, Engberg G and Vitos L 2019 Mater. Sci. Eng. A 759 490

    Article  CAS  Google Scholar 

  28. Park D B, Hong S M, Lee K H, Huh M Y, Suh J Y, Lee S C et al 2014 Mater. Char. 93 52

    Article  CAS  Google Scholar 

  29. Ghatak A and Robi P S 2015 Int. J. Res. Eng. Appl. Sci. 5 98

    Google Scholar 

  30. Ghatak A and Robi P S 2015 Man. Sci. Tech. 3 155

    Google Scholar 

  31. Hayhurst D R, Vakili-Tahami F and Zhou J Q 2003 Int. J. Press. Vess. Pip. 80 97

    Article  CAS  Google Scholar 

  32. Ha V T and Jung W S 2012 Mater. Sci. Eng. A 558 103

    Article  CAS  Google Scholar 

  33. Xu B X, Yue Z F and Eggeler G 2007 Acta Mater. 55 6275

    Article  CAS  Google Scholar 

  34. Nemat-Nasser S, Guo W G and Cheng J Y 1999 Acta Mater. 47 3705

    Article  CAS  Google Scholar 

  35. Naveena V D, Vijayanand V, Ganesan V, Laha K and Mathew M D 2012 Mater. Sci. Eng. A 552 112

    Article  CAS  Google Scholar 

  36. Reed R P and Walsh R P 2017 Int. J. Phys. Conf. Ser. 897 012002

    Article  Google Scholar 

  37. Wei L, Zhou F, Wang S, Hao W, Liu Y and Zhu J 2022 J. Mater. Res. 37 4153

    Article  CAS  Google Scholar 

  38. Hong C, Chen T, Li Z, Du A, Liu M, Liu P et al 2022 Mater. Sci. Eng. A 849 143535

    Article  CAS  Google Scholar 

  39. Shen L, Cheong W C D, Foo Y L and Chen Z 2012 Mater. Sci. Eng. A 532 505

    Article  CAS  Google Scholar 

  40. Pal S and Meraj M 2016 Mater. Des. 108 168

    Article  CAS  Google Scholar 

  41. Yamakov V, Wolf D, Phillpot S R, Mukherjee A K and Gleiter H 2004 Nat. Mater. 3 43

    Article  CAS  Google Scholar 

  42. Coleman J N, Khan U, Blau W J and Gun’ko Y K 2006 Carbon 44 1624

    Article  CAS  Google Scholar 

  43. Wolf D, Yamakov V, Phillpot S R, Mukherjee A and Gleiter H 2005 Acta Mater. 53 1

    Article  CAS  Google Scholar 

  44. Han Y and Elliott J 2007 Comp. Mater. Sci. 39 315

    Article  CAS  Google Scholar 

  45. Zhang Y, Zhuang X, Muthu J, Mabrouki T, Fontaine M, Gong Y et al 2014 Comp. Part B: Eng. 63 27

    Article  CAS  Google Scholar 

  46. Kim J M, Locker R and Rutledge G C 2014 Macr. 47 2515

    Article  CAS  Google Scholar 

  47. Wu H A 2006 Mech. Res. Comm. 33 9

    Article  Google Scholar 

  48. Yamakov V I, Warner D H, Zamora R J, Saether E, Curtin W A and Glaessgen E H 2014 J. Mech. Phys. Sol. 65 35

    Article  CAS  Google Scholar 

  49. Silvestre N, Faria B and Lopes J N C 2014 Comp. Sci. Tech. 90 16

    Article  CAS  Google Scholar 

  50. Alsoruji G S, Sadoun A M and Elmahdy M 2022 Met. 12 1888

    CAS  Google Scholar 

  51. Landman U, Luedtke W D, Burnham N A and Colton R J 1990 Science 248 454

    Article  CAS  Google Scholar 

  52. Rezaei R, Shariati M, Tavakoli-Anbaran H and Deng C 2016 Comp. Mater. Sci. 119 19

    Article  CAS  Google Scholar 

  53. Safina L R, Krylova K A and Baimova J A 2022 Mater. T. Phys. 28 100851

    CAS  Google Scholar 

  54. Zhou X W, Foster M E and Sills R B 2018 J. Comp. Chem. 39 2420

    Article  CAS  Google Scholar 

  55. Stukowski A 2009 Modell. Sim. Mater. Sci. Eng. 18 015012

    Article  Google Scholar 

  56. Stukowski A 2012 Modell. Sim. Mater. Sci. Eng. 20 045021

    Article  Google Scholar 

  57. Wang Y, Wu X, Li X, Xie Z, Liu R, Liu W et al 2020 Met. 10 234

    Google Scholar 

  58. Ma B, Wang X, Xu G, Xu J and He J 2022 Mat. 15 6523

    CAS  Google Scholar 

  59. Liang T, Liu X, Fan P, Zhu L, Bi Y and Zhang Y 2020 Int. J. Press. Vess. Pip. 179 104014

    Article  CAS  Google Scholar 

  60. Lakshmi A A and Swadesh K S 2018 Mater. Proc. 5 3704

    CAS  Google Scholar 

  61. Khoei A R, Eshlaghi G T and Shahoveisi S 2021 Mater. Sci. Engg. A 809 140977

    Article  CAS  Google Scholar 

  62. Plaut R L, Herrera C, Escriba D M, Rios P R and Padilha A F 2007 Mater. Res. 10 453

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank CSIR-NML for providing the financial assistance under the Project No. MLP-3122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, S. & Kumar, A. Structural phase transformation in single-crystal Fe–Cr–Ni alloy during creep deformation using molecular dynamics simulation and regression-based machine learning methodology. Bull Mater Sci 47, 7 (2024). https://doi.org/10.1007/s12034-023-03075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03075-2

Keywords

Navigation