Skip to main content
Log in

PANI/SnO2 nanoparticle, FTO/PET and Al/PET as hybrid nanocomposite soft electrodes synthesized by sol–gel, spray pyrolysis and thermal vacuum evaporation methods

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, polyaniline (PANI)/SnO2, and polyvinyl-alcohol (PVA)/PANI/SnO2 nanocomposite as polymer hybrid electrodes were synthesized from tin chloride precursor and PANI/PVA polymer by sol–gel solution method. Also, for comparison, the SnO2:F (transparent conductive oxide, FTO) and aluminium (Al) on PET substrate as metallic flexible electrodes were deposited by thermal vacuum evaporation and spray pyrolysis methods. Two different molar concentrations were used to synthesize PANI/SnO2 conductive electrodes. The conductive polymer nanocomposites and polymeric electrodes were characterized by XRD analysis, FE-SEM imaging, UV–Vis and FTIR spectroscopy. In the synthesized PANI/SnO2 nanocomposite with a larger amount of SnO2 solution (15 ml), the sharp peaks of PANI are completely removed. The XRD results for FTO/PET showed that at T = 200°C, the amorphous spectrum decreased sharply due to a decrease in the PET peak. Also, the peaks of SnO2 with the tetragonal and cubic structures were observed with the preferred direction (110). FE-SEM images of FTO thin films deposited on the PET polymer substrate at T = 200°C showed that the flat plates formed by bonding of SnO2 nanoparticles formed on the polymer substrate. Also, the optical bandgap of the PANI/SnO2 nanocomposite showed that with increasing the volume of SnO2 solution, the amount of energy gap increases. The results of FTIR spectroscopy showed that with increasing SnO2, there is no difference in the type of factor group and only affects the intensity of the peaks and leads to a little shift of the peaks to the modes of pure polyaniline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini A R and Lim H N 2021 Polymers 13 12

    Article  Google Scholar 

  2. Bhadra J, Alkareem A and Al-Thani N 2020 J. Polym. Res. 27 122

    Article  CAS  Google Scholar 

  3. Namsheer K and Chandra Sekhar Rout 2021 RSC Adv. 11 10

  4. Najjar R, Katourani S A and Hosseini M G 2018 Prog. Org. Coat. 124 110

    Article  CAS  Google Scholar 

  5. Lu H, Li X and Lei Q 2021 Front. Chem. 9 732132

    Article  CAS  Google Scholar 

  6. Jeon I Y and Baek J B 2010 Materials 3 6

    Article  Google Scholar 

  7. Bhadra S, Khastgir D, Singha N K and Lee J H 2009 Prog. Polym. Sci. 34 8

    Article  Google Scholar 

  8. Duarte L T, e Silva E M, Branco J R and Lins V F 2004 Surf. Coat. Technol. 182 2

  9. Sarda P, Hanan J C, Lawrence J G and Allahkarami M 2022 J. Polym. Sci. 60 1

    Article  Google Scholar 

  10. Uranga J, Nguyen B T, Si T T, Guerrero P and de la Caba K 2020 Polymers 12 2

    Google Scholar 

  11. Khademi N, Bagheri-Mohagheghi M M and Shirpay A 2022 Opt. Quant. Electron 54 130

    Article  CAS  Google Scholar 

  12. Shaban M, Almohammedi A, Saad R and M El Sayed A 2022 Nanomaterials 12 453

  13. Su S J and Kuramoto N 2000 Synthet. Metal. 114 2

    Google Scholar 

  14. Mo T C, Wang H W, Chen S Y and Yeh Y C 2008 Ceram. Int. 34 7

    Article  Google Scholar 

  15. Kondawar S B, Agrawal S P, Nimkar S H, Sharma H J and Patil P T 2012 Adv. Mater. Lett. 3 5

    Article  Google Scholar 

  16. Khuspea G D, Navalea S T, Bandgara D K, Chougulea M A and Patil V B 2014 Electron. Mater. Lett. 1 10

    Google Scholar 

  17. Feng Q, Zhang H, Shi Y, Yu X and Lan G 2021 Polymers 13 1360

    Article  CAS  Google Scholar 

  18. Kim H, Auyeung R C Y and Piqué A 2011 Thin Solid Films 520 1

    Article  Google Scholar 

  19. Huang X, Yu Z, Huang Sh, Zhang Q, Li D, Luo Y et al 2010 Mater. Lett. 64 15

    Article  Google Scholar 

  20. Sajedi S A, Bagheri-Mohagheghi M M and Shirpay A 2023 Opt. Quant. Electron. 55 1

    Article  Google Scholar 

  21. Kondawar S B, Deshpande M D and Agrawal S P 2012 Int. J. Compos. Mater. 2 3

    Google Scholar 

  22. Sarmah S and Kumar A 2013 Bull. Mater. Sci. 36 1

    Article  Google Scholar 

  23. Shirpay A and Bagheri Mohagheghi M M 2021 Mater. Sci. Eng.: B 272 115351

    Article  CAS  Google Scholar 

  24. Shayeghi Sabzevar P, Bagheri-Mohagheghi M M and Shirpay A 2023 J. Mater. Sci.: Mater. Electron. 34 791

    Google Scholar 

  25. Shirpay A and Bagheri Mohagheghi M M 2022 Physica B 627 413615

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Bagheri-Mohagheghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajedi, S.A., Bagheri-Mohagheghi, M.M. & Shirpay, A. PANI/SnO2 nanoparticle, FTO/PET and Al/PET as hybrid nanocomposite soft electrodes synthesized by sol–gel, spray pyrolysis and thermal vacuum evaporation methods. Bull Mater Sci 47, 9 (2024). https://doi.org/10.1007/s12034-023-03081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03081-4

Keywords

Navigation