Skip to main content
Log in

Continuous-time quantum walk based on cycle under broken-line decoherent noise

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

At present, decoherence continuous-time quantum walks are only based on measurement decoherence, but a new broken-line noise model for continuous-time quantum walks on the cycle is proposed. In this scheme, we first construct the Hamiltonian H according to four cases including no broken links, the link to the left of the node is broken, the link to the right of the node is broken, and both links are broken, and then, the probability of a walker is reconstructed. We analyze the probability distribution, mixing time, diffusion and localization, quantum coherence, and non-Markovian properties under different transition rates and broken-line probabilities. We observe that walkers exhibit different dynamics for two transition rates (slow transition rate and fast transition rate), the slow transition rate localizes the walker near the initial position, while the fast transition rate exhibits a shift to classical diffusion behavior. In particular, we use negentropy to evaluate the degree of classicization. Research has shown that a greater broken-line probability induces a transition to classicization. Our results contribute to a deeper understanding of the effects of broken-line noise and decoherence on continuous-time quantum walks and provide some reference value for the application research of broken-line decoherence continuous-time quantum walking in other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y Aharonov, L Davidovich, N Zagury Physical Review A 48 1687 (1993)

    Article  ADS  Google Scholar 

  2. S Karlin, J McGregor. Illinois Journal of Mathematics 3 66 (1959)

    Article  MathSciNet  Google Scholar 

  3. A Ambainis SIAM Journal on Computing 37 210 (2007)

    Article  MathSciNet  Google Scholar 

  4. F Magniez, M Santha, M Szegedy SIAM Journal on Computing 37 413 (2007)

    Article  MathSciNet  Google Scholar 

  5. A M Babatunde, J Cresser, J Twamley Physical Review A 90 012339 (2014)

    Article  ADS  Google Scholar 

  6. D Tamascelli, L Zanetti Journal of Physics A: Mathematical and Theoretical 47 325302 (2014)

    Article  Google Scholar 

  7. S Chakraborty, L Novo, S Di Giorgio and Y Omar Physical review letters 119 220503 (2017)

    Article  ADS  Google Scholar 

  8. E Farhi, S Gutmann Physical Review A 58 915 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  9. A Ambainis, E Bach, A Nayak, A Vishwanath Proceedings of the 33rd annual ACM symposium on Theory of computing pp 37–49 (2001)

  10. E Bach, S Coppersmith, M P Goldschen Journal of Computer and System Sciences 69 562 (2004)

    Article  Google Scholar 

  11. T A Brun, H A Carteret, A Ambainis Physical Review A 67 052317 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  12. D ben-Avraham, E M Bollt, C Tamon Quantum Information Processing 3 295-308 (2004)

    Article  Google Scholar 

  13. M Bednarska, A Grudka, P Kurzyński Physics Letters A 317 21 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. W Adamczak, K Andrew, L Bergen International Journal of Quantum Information 5 781 (2007)

    Article  Google Scholar 

  15. W Adamczak, K Andrew, P Hernberg arXiv preprint quant-ph/0308073 (2003)

  16. T D Mackay, S D Bartlett, L T Stephenson Journal of Physics A: Mathematical and General 35 2745 (2002)

    Article  ADS  Google Scholar 

  17. I Carneiro, M Loo, X Xu, M Girerd, V Kendon New Journal of Physics 7(1) 156 (2005)

    Article  ADS  Google Scholar 

  18. K Watabe, N Kobayashi, M Katori Physical Review A 77 062331 (2008)

    Article  ADS  Google Scholar 

  19. O Mülken, A Volta, A Blumen Physical Review A 72 042334 (2005)

    Article  ADS  Google Scholar 

  20. C Moore, A Russell International Workshop on Randomization and Approximation Techniques in Computer Science pp 164–178 (2002)

  21. F L Marquezino, R Portugal, G Abal Physical Review A 77 042312 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. V Kendon, B Tregenna Physical Review A 67 042315 (2003)

    Article  ADS  Google Scholar 

  23. A Romanelli, R Siri, G Abal Physica A: Statistical Mechanics and its Applications 347 137 (2005)

    Article  Google Scholar 

  24. M Annabestani, S J Akhtarshenas, M R Abolhassani Physical Review A 81 032321 (2010)

    Article  ADS  Google Scholar 

  25. R Zhang, H Qin, B Tang Chinese Physics B 22 110312 (2013)

    Article  ADS  Google Scholar 

  26. A Alberti, W Alt, R Werner New Journal of Physics 16 123052 (2014)

    Article  ADS  Google Scholar 

  27. M N Jayakody, A Nanayakkara, E Cohen Optics 2 236 (2021)

    Article  Google Scholar 

  28. A C Oliveira, R Portugal, R Donangelo Physical Review A 74 012312 (2006)

    Article  ADS  Google Scholar 

  29. M Gönülol, E Aydiner, Ö E Müstecaplıoğlu Physical Review A 80 022336 (2009)

    Article  ADS  Google Scholar 

  30. C Ampadu Communications in Theoretical Physics 57 41 (2012)

    Article  MathSciNet  Google Scholar 

  31. C M Chandrashekar, T Busch Journal of Physics A: Mathematical and Theoretical 46 105306 (2013)

    Article  ADS  Google Scholar 

  32. T Chen, X Zhang Physical Review A 94 012316 (2016)

    Article  ADS  Google Scholar 

  33. Y G Yang, X X Wang, J Li Modern Physics Letters A 36 2150210 (2021)

    Article  ADS  Google Scholar 

  34. R A M Santos, F L Marquezino Physical Review A 105 032452 (2022)

    Article  ADS  Google Scholar 

  35. D Solenov, L Fedichkin Physical Review A 73 012313 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  36. S A Gurvitz Physical Review B 56 15215 (1997)

    Article  ADS  Google Scholar 

  37. S A Gurvitz Physical Review B 57 6602 (1998)

    Article  ADS  Google Scholar 

  38. S A Gurvitz, L Fedichkin, D Mozyrsky Physical review letters 91 066801 (2003)

    Article  ADS  Google Scholar 

  39. L Fedichkin, D Solenov, C Tamon arXiv preprint quant-ph/0509163 (2005)

  40. S Salimi, R Radgohar Journal of Physics A: Mathematical and Theoretical 42 475302 (2009)

    Article  ADS  Google Scholar 

  41. S Salimi, R Radgohar Journal of Physics B: Atomic, Molecular and Optical Physics 43 025503 (2010)

    Article  ADS  Google Scholar 

  42. S Salimi, R Radgohar International Journal of Quantum Information 8 795 (2010)

    Article  Google Scholar 

  43. F W Strauch Physical Review A 79 032319 (2009)

    Article  ADS  Google Scholar 

  44. M Drezgich, A P Hines, M Sarovar arXiv preprint arXiv:0811.4472 (2008)

  45. C Benedetti, F Buscemi, P Bordone Physical Review A 93 042313 (2016)

    Article  ADS  Google Scholar 

  46. G Bressanini, C Benedetti, M G A Paris Quantum Information Processing 21 317 (2022)

    Article  ADS  Google Scholar 

  47. Y G Yang, J R Dong, Y L Yang International Journal of Theoretical Physics 60 1025 (2021)

    Article  Google Scholar 

  48. L T Tude, M C de Oliveira Physica A: Statistical Mechanics and its Applications 605 128012 (2022)

    Article  Google Scholar 

  49. M N Jayakody, A Nanayakkara, E Cohen Optics 2 236 (2021)

    Google Scholar 

  50. N I Ishak, S V Muniandy, W Y Chong Physica A: Statistical Mechanics and its Applications 559 125124 (2020)

    Article  Google Scholar 

  51. J MZiman Cambridge University Press (1972)

  52. C Kittel, P McEuen Wiley (2018)

  53. Comon, P. Signal processing 36 287 (1994)

    Article  ADS  Google Scholar 

  54. Marquezino, F. L., Portugal, R., Abal, G., & Donangelo, R. Physical Review A 77 042312 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  55. Modugno, M. New Journal of Physics 11 033023 (2009)

    Article  ADS  Google Scholar 

  56. Baumgratz, T., Cramer, M., & Plenio, M. B. Physical review letters 113 140401 (2014)

    Article  ADS  Google Scholar 

  57. Breuer, H. P., Laine, E. M., & Piilo, J. Physical review letters 103 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by The National Natural Science Foundation of China (No. 61602019); Beijing Natural Science Foundation (Grant No.4182006);

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Min Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, WM., Tian, P., Zhou, YH. et al. Continuous-time quantum walk based on cycle under broken-line decoherent noise. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03032-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03032-z

Keywords

Navigation