Skip to main content
Log in

Cluster Self-Organization of Intermetallic Systems: Clusters-Precursors K15, K6, K5, and K4 for the Self-Assembly of Crystal Structures Pu31Rh20-tI204, Pu20Os12-tI32, (Pu4Co)2(Pu4)-tI28, (Ti4Ni)2(Bi4)-tI28, and Bi4-tI8

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Using the ToposPro software package, a combinatorial-topological analysis and modeling of the self-assembly of the following crystal structures with space group I4/mcm are realized: Pu31Rh20-tI204: a = 11.076 Å, c = 36.933 Å, V = 4530.86 Å3, Pu20Os12-tI32: a = 10.882 Å, c = 5.665 Å, V = 670.8 Å3. (Pu4Co)2 (Pu4)-tI28: a = 10.475 Å, c = 5.340 Å, V = 585.9Å3. (Ti4Ni)2(Bi4)-tI28: a = 10.554 Å, c = 4.814 Å, V = 536.2Å3, Bi4-tI8: a = 8.518 Å, c = 4.164 Å, V = 302.15 Å3. For the crystal structure of Pu31Rh20-tI204, 113 variants of the cluster representation of the 3D atomic network with the following number of structural units are established: 4 (14 variants), 5 (61 variants), and 6 (38 variants). A variant of the self-assembly of the crystal structure with the participation of three types of framework-forming polyhedra is considered: K15 = Pu@14(Rh2Pu5)2 with symmetry –42m, double pyramids K10 = (Rh@Pu4)2 with symmetry 4, and octahedra K6 = 0@8(Rh2Pu6) with symmetry mmm and spacers Rh. For the crystal structure of Pu20Os12-tI32, framework-forming pyramid-shaped polyhedra K5 = 0@OsPu4 with symmetry 4, as well as spacers Pu and Os, are defined. For the crystal structure (Ti4Ni)2(Bi4), frame-forming pyramids K5 = 0@Ti4Ni and tetrahedra K4 = 0@Bi4) are defined. For the crystal structure (Pu4Co)2(Pu4)-tI28, frame-forming pyramids K5 = 0@ Pu4Co and tetrahedra K4 = 0@Pu4 are defined. For the crystal structure of Bi4-tI8, frame-forming tetrahedra K4 = 0@Bi4 are defined. The symmetric and topological code of self-assembly processes of 3D structures is reconstructed from clusters-precursors in the following form: primary chain → layer → framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Inorganic Crystal Structure Database (ICSD), Karlsruhe: Fachinformationszentrum, USA: Natl. Inst. Stand. Technol.

  2. Pearson’s Crystal Data—Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int.

  3. Cromer, D.T., Plutonium–platinum Pu2Pt, Acta Crystallogr., Sect. B, 1978, vol. 34, pp. 2608–2610.

    Article  Google Scholar 

  4. Cromer, D.T. and Larson, A.C., The structure of Pu5Pt3, Acta Crystallogr., Sect. B, 1975, vol. 31, pp. 1758–1759.

    Article  Google Scholar 

  5. Beznosikova, A.V., Chebotarev, N.T., Lukyanov, A.S., Chernyi, A.V., and Smirnova, A.E., Crystal structures of Pu5Ru3, Ph5Rh3, Pu5Os3, Pu5Ir3, Pu5Pt3, At. Energ., 1974, vol. 37, pp. 144–148.

    Article  CAS  Google Scholar 

  6. Cromer, D.T. and Larson, A.C., The crystal structure of Pu31Pt20 and Pu31Rh20, Acta Crystallogr., Sect. B, 1977, vol. 33, pp. 2620–2627.

    Article  Google Scholar 

  7. Cromer, D.T., Plutonium-rhodium Pu5Rh4. The crystal structures of the compounds Pu5 Rh4 and Pu5Ir4, Acta Crystallogr., Sect. B, 1977, vol. 33, pp. 1993–1995.

    Article  Google Scholar 

  8. Kutaitsev, V.I., Chebotarev, N.T., Andrianov, M.A., Konev, V.N., Lebedev, I.G., Bagrova, V.I., Beznosikova, A.V., Kruglov, A.A., Petrov, P.N., and Smotritskaya, E.S., Phase diagrams of plutonium with metals of groups IIA, IVA, VIII, and IB, Sov. At. Energy, 1967, vol. 23, pp. 1279–1287.

    Article  Google Scholar 

  9. Erdman, B. and Keller, C., The preparation of actinide (+ zirconium and hafnium)—noble metal alloy phases by coupled reductions, Inorg. Nucl. Chem. Lett., 1971, vol. 7, pp. 675–683.

    Article  Google Scholar 

  10. Kutaitsev, V.I., Chebotarev, N.T., Lebedev, I.G., Andrianov, M.A., Konev, V.M., and Menshikova, T.S., Phase diagrams of plutonium with metals of groups IIA, IVA, VIII, and IB, in Plutonium 1965, Proceedings of the International Conference, 1967, pp. 420–449; At. Energ., 1967, vol. 23, pp. 511–519.

    CAS  Google Scholar 

  11. Land, C.C., Peterson, D.E., and Roof, R.B., Phase invetigations of the Pu–Pt, Pu–Rh, and Pu–Pt–Rh systems, J. Nucl. Mater., 1978, vol. 75, pp. 262–273.

    Article  CAS  Google Scholar 

  12. Erdman, B. and Keller, C., Noble metal alloy phases, preparation and properties, J. Solid State Chem., 1973, vol. 7, pp. 40–48.

    Article  Google Scholar 

  13. Land, C.C., Peterson, D.E., and Roof, R.B., Phase investigations of the Pu–Pt, Pu–Rh, and Pu–Pt–Rh systems, J. Nucl. Mater., 1978, vol. 75, pp. 262–273.

    Article  CAS  Google Scholar 

  14. Lawson, A.C., Jr., Williams, A., Huber, J.G., and Roof, R.B., Magnetic structure of UPt, J. Less-Common Met., 1986, vol. 120, pp. 113–122.

    Article  CAS  Google Scholar 

  15. Degtyareva, O., McMahon, M.I., and Nelmes, R.J., Crystal structure of the high pressure phase of bismuth Bi-III, Mater. Sci. Forum, 2001, vol. 378, pp. 469–474.

    Article  Google Scholar 

  16. Ilyushin, G.D., New cluster precursors-K5 pyramids and K4 tetrahedra-for self-assembly of crystal structures of Mn4(ThMn4)(Mn4)-tI26, Mn4(CeCo4)(Co4)-tI26, and MoNi4-tI10 families, Crystallogr. Rep., 2022, vol. 67, no. 7, pp. 1088–1094.

    Article  CAS  Google Scholar 

  17. Shevchenko, V.Y., Medrish, I.V., Ilyushin, G.D., and Blatov, V.A., From clusters to crystals: Scale chemistry of intermetallics, Struct. Chem., 2019, vol. 30, pp. 2015–2027.

    Article  CAS  Google Scholar 

  18. Ilyushin, G.D., Intermetallic compounds NakMn (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 4, pp. 539–545.

    Article  CAS  Google Scholar 

  19. Ilyushin, G.D., Intermetallic compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 7, pp. 1095–1105.

    Article  CAS  Google Scholar 

  20. Ilyushin, G.D., Intermetallic compounds CsnMk (M = Na, K, Rb, Pt, Au, Hg, Te): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2022, vol. 67, no. 7, pp. 1075–1087.

    Article  CAS  Google Scholar 

  21. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585.

    Article  CAS  Google Scholar 

Download references

Funding

The self-assembly of crystal structures was modeled with the support of the Russia Ministry of Education and Science as part of a state assignment of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences. The cluster analysis was supported by the Russian Science Foundation (RNF no. 21-73-30019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Ya. Shevchenko or G. D. Ilyushin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Ilyushin, G.D. Cluster Self-Organization of Intermetallic Systems: Clusters-Precursors K15, K6, K5, and K4 for the Self-Assembly of Crystal Structures Pu31Rh20-tI204, Pu20Os12-tI32, (Pu4Co)2(Pu4)-tI28, (Ti4Ni)2(Bi4)-tI28, and Bi4-tI8. Glass Phys Chem 49, 544–556 (2023). https://doi.org/10.1134/S1087659623600692

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600692

Keywords:

Navigation