Skip to main content
Log in

Thermodynamic and Kinetic Studies of Glass-Forming Compositions in Ca‒Mg‒Cu Ternary Metallic Glasses

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Herein, we systematically studied the thermodynamic and kinetic aspects of glass forming compositions in CaMgCu alloy obtained by drawing the isocontour. Parameter \({{P}_{{{\text{HS}}}}}\) derived from the enthalpy of chemical mixing (ΔHchem) and normalized mismatch entropy (\(\Delta {{S}_{\sigma }}/{{k}_{{\text{B}}}}\)) is used as a glass-forming ability (GFA) parameter. Variation of \({{P}_{{{\text{HS}}}}}\) with reported and calculated compositions is evaluated. Linear relation of Cu with \({{P}_{{{\text{HS}}}}}\) is observed, whereas inverse relation of Ca and Mg is obtained. The linear variation of \({{P}_{{{\text{HS}}}}}\) with a supercooled liquid region (SCLR) (\(\Delta {{T}_{{\text{x}}}}\)) is studied. Inverse correlation of critical cooling rate (\({{R}_{{\text{C}}}}\)) with \({{P}_{{{\text{HS}}}}}\) is obtained. \({{R}_{{\text{C}}}}\) for predicted compositions is found close to that of reported compositions. Therefore, Cu should be added carefully with other elements to improve the GFA and reduce the cooling rate of Ca‒Mg‒Cu glassy. In this paper, an empirical correlation of \(\Delta {{T}_{{\text{x}}}}\) with \({{P}_{{{\text{HS}}}}}\) is proposed, and the modeled values are found to agree with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Senkov, O.N., Miracle, D.B., Babilas, R., and Keppens, V., Fabrication of ternary Ca-Mg-Zn bulk metallic glasses, J. Achievem. Mater. Manuf. Eng., 2013, vol. 56, no. 2, pp. 67–74.

    Google Scholar 

  2. Nowosielski, R., Borowski, A., Guwer, A., and Liaw, P.K., Development and characterization of low-density Ca-based bulk metallic glasses: An overview, Metall. Mater. Trans., A, 2008, vol. 39, pp. 1888–1990.

    Article  Google Scholar 

  3. Chattopadhyay, C., Idury, K., S.N.S., Bhatt, J., Mondal, K., and Murty, B.S., Critical evaluation of glass forming ability criteria, Mater. Sci. Technol., 2016, vol. 32, no. 4, pp. 380–400.

    Article  CAS  Google Scholar 

  4. Bhatt, J., Jiang, W., Junhai, X., Qing, W., Dong, C., and Murty, B.S., Optimization of bulk metallic glass forming compositions in Zr-Cu-Al system by thermodynamic modeling, Intermetallics, 2007, vol. 15, nos. 5–6, pp. 716–721.

    Article  CAS  Google Scholar 

  5. Vincent, S., Peshwe, D.R., Murthy, B.S., and Bhatt, J., Thermodynamic prediction of bulk metallic glass forming alloys in ternary Zr-Cu-X (X = Ag, Al, Ti, Ga) systems, J. Non-Cryst. Solids, 2011, vol. 357, nos. 19–20, pp. 3495–3499.

    Article  CAS  Google Scholar 

  6. Rao, B.R., Shah, A.K., Srinivas, M., Bhatt, J., Gandhi, A.S., and Murty, B.S., On prediction of amorphous phase forming compositions in iron rich Fe-Zr-B ternary system and their synthesis, Metall. Mater. Trans. A, 2011, vol. 42, pp. 3913–3920.

    Article  Google Scholar 

  7. Khond, A., Babu, D.A., Smaran, S., Deshmukh, A., Majumdar, B., Bhatt, J., and Srivastav, A.K., Thermodynamic calculation and experimental validation of Hf-rich glass forming compositions in Hf-Cu-Ni system, J. Non-Cryst. Solids, 2018, vol. 500, no. 15, pp. 191–195.

    Article  CAS  Google Scholar 

  8. Vincent, S., Murty, B.S., and Bhatt, J., Prediction of bulk metallic glass formation in Cu-Zr-Ag-Hf system by thermodynamic and topological modeling, Trans. Indian Inst. Met., 2012, vol. 65, pp. 827–831.

    Article  CAS  Google Scholar 

  9. Bhatt, J., Dey, G.K., and Murty, B.S., Thermodynamic and topological modeling and synthesis of Cu-Zr-Ti-Ni-based bulk metallic glasses by mechanical alloying, Met. Mater. Trans. A, 2008, vol. 39, pp. 1543–1551.

    Article  Google Scholar 

  10. Arvindhababu, D., Majmudar, B., Srivastava, A.P., Ramakrishnarao, B., Srivastava, D., Murty, B.S., and Akhtar, D., Structure, properties, and glass forming ability of melt-spun Fe-Zr-B-Cu Alloys with different Zr/B Ratios, Metall. Mater. Trans. A, 2011, vol. 42, pp. 508–516.

    Article  CAS  Google Scholar 

  11. Bhatt, J. and Murty, B.S., Identification of bulk metallic forming compositions through thermodynamic and topological models, Mater. Sci. Forum, 2010, vol. 649, pp. 67–73.

    Article  CAS  Google Scholar 

  12. Khond, A., Chattopadhyay, C., Majumdar, B., Bhatt, J., and Srivastav, A.K., Kinetic approach to determine the glass-forming ability in Hf-based metallic glasses, Metall. Mater. Trans. A, 2021, vol. 52, pp. 1169–1173.

    Article  CAS  Google Scholar 

  13. Chattopadhyay, C. and Murty, B.S., Kinetic modification of the ‘confusion principle’ for metallic glass formation, Scr. Mater., 2016, vol. 116, pp. 7–10.

    Article  CAS  Google Scholar 

  14. Chattopadhyay, C., Prasad, A., and Murty, B.S., Phase prediction in high entropy alloys: A kinetic approach, Acta. Mater., 2018, vol. 153, pp. 214–225.

    Article  CAS  Google Scholar 

  15. Senkov, O.N., Scott, J.M., and Miracle, D.B., Composition range and glass forming ability of ternary Ca-Mg-Cu bulk metallic glasses, J. Alloys Compd., 2006, vol. 424, nos. 1–2, pp. 394–399.

    Article  CAS  Google Scholar 

  16. Amiya, K. and Inoue, A., Formation, thermal stability and mechanical properties of Ca-based bulk glassy alloys, Mater. Trans. JIM, 2002, vol. 43, no. 1, pp. 81–84.

    Article  CAS  Google Scholar 

  17. Senkov, O.N., Miracle, D.B., and Scott, J.M., Development and characterization of Ca-Mg-Zn-Cu bulk metallic glasses, Intermetallics, 2006, vol. 14, nos. 8–9, pp. 1055–1060.

    Article  CAS  Google Scholar 

  18. Niessen, A.K., de Boer, F.R., Boom, R., de Chatel, P.F., Mattens, W.C.M., and Miedema, A.R., Model predictions for the enthalpy of formation of transition metal alloys II, CALPHAD, 1983, vol. 7, no. 1, pp. 51–70.

    Article  CAS  Google Scholar 

  19. Deshmukh, A.A., Khond, A.A., and Palikundwar, U.A., Prediction of glass forming compositions in Al-Fe-Si alloy system by thermodynamic approach, J. Non-Cryst. Solids, 2017, vol. 477, pp. 50–57.

    Article  CAS  Google Scholar 

  20. Guo, S. and Liu, C.T., Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. Mater. Int., 2011, vol. 21, no. 6, pp. 433–446.

    Article  Google Scholar 

  21. Takeuchi, A., Kato, H., and Inoue, A., Vogel-Fulcher-Tammann plot for viscosity scaled with temperature interval between actual and ideal glass transitions for metallic glasses in liquid and supercooled liquid states, Intermetallics, 2010, vol. 18, no. 4, pp. 406–411.

    Article  CAS  Google Scholar 

  22. Battezzati, L. and Greer, A.L., The viscosity of liquid metals and alloys, Acta Metall., 1989, vol. 37, no. 7, pp. 1791–1802.

    Article  CAS  Google Scholar 

  23. Budai, I., Benko, M.Z., and Kaptay, G., Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys, Mater. Sci. Forum, 2007, vols. 537–538, pp. 489–496.

    Article  Google Scholar 

  24. Babilas, R., Andraczke, K.C., Babilas, D., and Simka, W., Structure and corrosion resistance of Ca50Mg20Cu30 bulk metallic glasses, J. Mater. Eng. Perform., 2015, vol. 24, pp. 67–174.

    Article  Google Scholar 

  25. https://periodictable.com/Properties/A/FusionHeat. an.html.

  26. https://periodictable.com/Properties/A/VaporizationHeat.an.html.

  27. Kawazoe, Y., Watamura, U.C., and Takeuchi, A., Phase Diagrams and Physical Properties of Nonequlibrium Alloys, Vol. 37 (B), Part 2 of Condensed Matter, Berlin: Springer, 1997.

    Google Scholar 

  28. https://www.doitpoms.ac.uk/tlplib/creep/homologous.php.

  29. Suryanarayana, C. and Inoue, A., Bulk Metallic Glasses, Boca Raton, FL: CRC, 2001.

    Google Scholar 

  30. Johnson, R.W., Handbook of Fluid Dynamics, 2nd ed., Boca Raton, FL: CRC, 2016.

    Book  Google Scholar 

  31. Andrade, E.N., A theory of the viscosity of liquids, Part I, Philos. Mag., 1934, vol. 17, pp. 497–511.

    Article  CAS  Google Scholar 

  32. Busch, R., The thermophysical properties of bulk metallic glass-forming liquids, J. Mater., 2000, vol. 52, pp. 39–42.

    CAS  Google Scholar 

Download references

Funding

ABBREVIATIONS

GFA, glass-forming ability; SCLR, supercooled liquid region; GFCs, glass-forming compositions; DSC, differential scanning calorimetry; TTT, time‒temperature transformation; \({{T}_{{\text{g}}}}\), glass transition temperature; \(~\Delta {{H}_{{{\text{chem }}}}}\), enthalpy of chemical mixing; \(\Delta {{S}_{\sigma }}/{{k}_{{\text{B}}}}\), normalized mismatch entropy; \(\Delta {{S}_{{\text{C}}}}/R\), normalized configurational entropy; \({{R}_{{\text{C}}}}\), critical cooling rate; homologous temperature, \({{T}_{{\text{H}}}}\); I, nucleation rate; u, growth rate; D, diffusion coefficient; η, viscosity.

FUNDING

One of the authors, Akash A. Deshmukh, thanks UGC, NEW DELHI, INDIA for providing Basic Science Research (BSR) fellowship. One of the authors, Jain Bhatt, would like to acknowledge the Science and Engineering Research Board grant (CRG/2019/003674) for research support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akash A. Deshmukh or Umesh A. Palikundwar.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akash A. Deshmukh, Khond, A.A., Bhatt, J.G. et al. Thermodynamic and Kinetic Studies of Glass-Forming Compositions in Ca‒Mg‒Cu Ternary Metallic Glasses. Glass Phys Chem 49, 604–616 (2023). https://doi.org/10.1134/S1087659622600211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622600211

Keywords:

Navigation