Skip to main content
Log in

Synthesis and Structure of New Potassium and Cesium Zinc Diphosphates

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This article presents the results of a study of new solid solutions formed in the system of diphosphates of alkaline elements and zinc: K2Zn3(P2O7)2–Cs2Zn3(P2O7)2. The obtained materials are promising as matrices for creating phosphors. The formation of phases containing two alkali cations is established on samples obtained by solid-phase synthesis by X-ray phase analysis, and the results of studying their thermal stability are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Volkov, S., Petrova, M., Sinel’shchikova, O., Firsova, V., Popova, V., Ugolkov, V., Krzhizhanovskaya, M., and Bubnova, R., Crystal structure and thermal properties of the LixNa1 – xKZnP2O7 solid solutions and its relation to the MM'ZnP2O7 diphosphate family, J. Solid State Chem., 2019, vol. 269, pp. 486–493.

    Article  CAS  Google Scholar 

  2. Sunitha, A.M., Gopalakrishna, G.S., and Byrappa, K., Comparative study of impedance properties of LiH-Zn(P2O7), Na2ZnP2O7–HCl and KHZnP2O7 crystals, J. Int. Acad. Res. Multidiscipl., 2016, vol. 4, no. 2, pp. 329–339.

    Google Scholar 

  3. Voronin, V.I., Sherstobitova, E.A., Blatov, V.A., and Shekhtman, G.Sh., Lithium-cation conductivity and crystal structure of lithium diphosphate, J. Solid State Chem., 2014, vol. 211, p. 170.

    Article  CAS  Google Scholar 

  4. Saha, S., Rousse, G., Fauth, F., Pomjakushin, V., and Tarascon, J.-M., Influence of temperature-driven polymorphism and disorder on ionic conductivity in Li6Zn(P2O7)2, Inorg. Chem., 2019, vol. 58, no. 3, p. 1774.

    Article  CAS  Google Scholar 

  5. Kharroubi, M., Assad, H., Gacem, L., and Henn, F., Study of dielectric relaxation phenomena of Na2ZnP2O7 diphosphate glass dopped with cobalt(II) by impedance spectroscopy, Int. J. Emerg. Technol. Adv. Eng., 2014, vol. 4, no. 7, p. 49.

    Google Scholar 

  6. Averbuch-Pouchot, M.T., Crystal data on Zn3Rb2(P2O7)2 and Co3Rb2(P2O7)2. Crystal structure of Zn3Rb2(P2O7)2, Zeitschr. Kristallogr., 1985, vol. 171, pp. 113–119.

    CAS  Google Scholar 

  7. Caldiño, U., Lira, A., Meza-Rocha, A.N., Camarillo, I., and Lozada-Morales, R., Development of sodium-zinc phosphate glasses doped with Dy3+, Eu3+ and Dy3+/Eu3+ for yellow laser medium, reddish-orange and white phosphor applications, J. Lumin., 2018, vol. 194, p. 231.

    Article  Google Scholar 

  8. Soriano-Romero, O., Lozada-Morales, R., Meza-Rocha, A.N., Carmona-Téllez, S., Caldino, U., Flores-Desirena, B., and Palomino-Merino, R., Cold bluish white and blue emissions in Cu+-doped zinc phosphate glasses, J. Lumin., 2020, vol. 217, p. 116791.

    Article  CAS  Google Scholar 

  9. Shwetha, M. and Eraiah, B., Influence of Dy3+ ions on the physical, thermal, structural and optical properties of lithium zinc phosphate glasses, J. Non-Cryst. Solids, 2021, vol. 555, p. 120622.

    Article  CAS  Google Scholar 

  10. Quinn, C.J., Beall, G.H., and Dickenson, J.E., Alkali zinc pyrophosphate glasses for polymer blends, Bull. Span. Soc. Ceram. Class., 1992, vol. 4, p. 79.

    Google Scholar 

  11. Rivera, F.L.F., Velázquez, D.Y.M., Aldaya, I., and Pérez-Sánchez, G.G., Characterization of the optical gain in erbium–ytterbium–doped zinc and sodium–zinc phosphate glasses, Opt. Mater. Express, 2022, vol. 12, pp. 4491–4498.

    Article  CAS  Google Scholar 

  12. Khelloufi, M., Kharroubi, M., Gacem, L., Balme, S., and Assad, H., Electrical conductivity and dielectric properties of rare earth ions (Ce3+, Pr3+ and Eu3+) doped in zinc sodium phosphate glass, J. Non-Cryst. Solids, 2021, vol. 567, p. 120933.

    Article  Google Scholar 

  13. Rayan, D.A. and Elbashar, Y.H., Spectroscopic analysis of potassium zinc phosphate glass matrix doped CuO for optical filter applications, J. Opt., 2020, vol. 49, pp. 564–572.

    Article  Google Scholar 

  14. Langar, A., Bouzidi, Ch., Elhouichet, H., and Férid, M., Er-Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 μm broadband optical amplifiers, J. Lumin., 2014, vol. 148, pp. 249–255.

    Article  CAS  Google Scholar 

  15. Liu, Q., Dang, P., Zhang, G., Lian, H., Li, G., Molokeev, M.S., Cheng, Z., and Lin, J., Broad luminescence tuning in Mn2+-doped Rb2Zn3(P2O7)2 via doping level control based on multiple synergies, CrystEngComm, 2022, vol. 24, pp. 5622–5629.

    Article  CAS  Google Scholar 

  16. Zhu, Sh.-Y., Zhao, D., and Liu, W., A broad emission band of phosphor Cs2Zn3(P2O7)2:Mn2+ induced by multi-sites of Mn2+, Inorg. Chem. Comm., 2023, vol. 150, p. 110397.

    Article  CAS  Google Scholar 

  17. Rim, B., Lakhdar, G., Bachir, B., Hassan, A.A., Mohamed Toufik, S., Boubakeur, S., Elhadj Ahmed, G., Ahmed, G., and Guerbous, L., Synthesis and luminescence spectroscopy study of a novel orange-red (OR) color emissions phosphor based on Tb3+ ion doped Na2ZnP2O7, Luminescence, 2021, vol. 36, no. 2, p. 489.

    Article  Google Scholar 

  18. Bhake, A.M., Parauha, Y.R., and Dhoble, S.J., Synthesis and photoluminescence study of Ce3+ ion-activated Na2ZnP2O7 and Na4P2O7 pyrophosphate phosphors, J. Mater. Sci., Mater. Electron., 2020, vol. 31, p. 548.

    Article  CAS  Google Scholar 

  19. Guerbous, L. and Gacem, L., Synthesis and luminescent properties of Eu3+ doped crystalline diphosphate Na2ZnP2O7, Acta Phys. Polon. A, 2012, vol. 122, no. 3, p. 535.

    Article  CAS  Google Scholar 

  20. Amara, A., Gacem, L., Gueddim, A., Belbal, R., Soltani, M.T., and Guerbous, L., Luminescence properties of Cr3+ ions in Na2ZnP2O7 crystal, Phys. B (Amsterdam), 2018, vol. 545, p. 408.

    Google Scholar 

  21. Fhoula, M. and Dammak, M., Optical spectroscopy of thermal stable Na2ZnP2O7:Sm3+/(Li+, K+) phosphors, J. Lumin., 2019, vol. 210, p. 1.

    Article  CAS  Google Scholar 

  22. Belbal, R., Gacem, L., and Bentria, B., Blue emission of Co2+ in K2ZnP2O7 phosphors, Inorg. Chem. Commun., 2018, vol. 97, p. 39.

    Article  CAS  Google Scholar 

  23. Zhao, S.G., Yang, X.Y., Yang, Y., Kuang, X.J., Lu, F.Q., Shan, P., Sun, Z.H., Lin, Z.S., Hong, M.C., and Luo, J.H., Noncentrosymmetric RbNaMgP2O7 with unprecedented thermo-induced enhancement of second harmonic generation, J. Am. Chem. Soc., 2018, vol. 140, pp. 1592–1595.

    Article  CAS  Google Scholar 

  24. Zhao, S.G., Gong, P.F., Luo, S.Y., Bai, L., Lin, Z.S., Ji, C.M., Chen, T.L., Hong, M.C., and Luo, J.H., Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4]3– units, J. Am. Chem. Soc., 2014, vol. 136, pp. 8560–8563.

    Article  CAS  Google Scholar 

  25. Wu, H., Liu, S., Cheng, S., Yu, H., Hu, Zh., Wang, J., and Wu, Y., Syntheses, characterization, and theoretical calculation of Rb2Mg3(P2O7)2 polymorphs with deep-ultraviolet cutoff edges, Sci. China Mater., 2020, vol. 63, pp. 593–601.

    Article  CAS  Google Scholar 

  26. Song, Z., Yu, H., Wu, H., Hu, Z., Wang, J., and Wu, Y., Syntheses, structures and characterization of non-centrosymmetric Rb2Zn3(P2O7)2 and centrosymmetric Cs2M3(P2O7)2 (M = Zn, Mg), Inorg. Chem. Front., 2020, vol. 7, pp. 3482–3490.

    Article  CAS  Google Scholar 

  27. Yu, H., Young, J., Wu, H., Zhang, W., Rondinelli, J.M., and Halasyamani, P.Sh., M4Mg4(P2O7)3 (M = K, Rb): Structural engineering of pyrophosphates for nonlinear optical applications, Chem. Mater., 2017, vol. 29, p. 1845.

    Article  CAS  Google Scholar 

  28. Srivastava, A.M., Comanzo, H.A., Camardello, S., Chanry, S.B., Aycibin, M., and Happek, U., Unusual luminescence of octahedrally coordinated divalent europium ion in Cs2M2+P2O7 (M2+ = Ca, Sr), J. Lumin., 2009, vol. 129, pp. 919–925.

    Article  CAS  Google Scholar 

  29. Lapshin, A.E. and Petrova, M.A., Synthesis and crystal structure of the low-temperature modification of lithium potassium zinc diphosphate LiKZnP2O7, Glass. Phys. Chem., 2009, vol. 35, pp. 637–642.

    Article  CAS  Google Scholar 

  30. Petrova, M.A. and Sinel’shchikova, O.Yu., Triangulation in the Li2ZnP2O7–Na2ZnP2O7–K2ZnP2O7 system, Russ. J. Inorg. Chem., 2022, vol. 67, no. 2, pp. 209–215.

    Article  CAS  Google Scholar 

  31. Song, H., Zhang, Sh., Li, Y., Liu, W., Lin, Z., Yao, J., and Zhang, G., Syntheses, crystal structures, and characterizations of three new pyrophosphates CsNaZnP2O7, RbNaZnP2O7, and RbLiMgP2O7, Solid State Sci., 2019, vol. 95, p. 105940.

    Article  CAS  Google Scholar 

  32. Ji, L.N., Cai, G.M., Li, J.B., Luo, J., Liang, J.K., Zhang, J.Y., Liu, Y.H., Rao, G.H., and Chen, X.L., Crystal structure and thermal properties of compound K2Zn3(P2O7)2, Powder Diffract., 2008, vol. 23, no. 4, pp. 317–322.

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out as part of a state task of Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences (subject no. 0081-2022-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Sinel’shchikova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsygankova, D.I., Sinel’shchikova, O.Y. & Ugolkov, V.L. Synthesis and Structure of New Potassium and Cesium Zinc Diphosphates. Glass Phys Chem 49, 657–663 (2023). https://doi.org/10.1134/S1087659623600643

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600643

Keywords:

Navigation