Skip to main content
Log in

Spectral Properties of Nanostructured Composite Glass Materials Activated by Yttrium in the Presence of Copper or Bismuth

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Composite materials (CMs) based on porous glass matrices activated by yttrium in the presence of copper or bismuth are synthesized. It is established that, depending on the composition, the CM samples exhibit UV, blue-green, red, and infrared luminescence due to the presence of various centers, including Bi3+ and Cu+ ions, F centers in Y2O3, and molecular ions \({\text{O}}_{3}^{{ - 2}}\) associated with cation vacancies Y3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Hashim, A. and Hadi, A., Synthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor application, Sensor Lett., 2017, vol. 15, no. 10, pp. 858–861.

    Article  Google Scholar 

  2. El-Sayed, F., Ganesh, V., Hussien, M.S.A., AlAbdulaal, T.H., Zahran, H.Y., Yahia, I.S., Abdel-wahab, M.Sh., Shakir, M., and Bitla, Y., Facile synthesis of Y2O3/CuO nanocomposites for photodegradation of dyes/mixed dyes under UV- and visible light irradiation, J. Mater. Res. Technol., 2022, vol. 19, pp. 4867–4880.

    Article  CAS  Google Scholar 

  3. Marappa, B., Pattar, V., and Rudresha, M.S., Investigations of structural, optical and electrical properties of Cu2+ doped Y2O3 nanosheets, Chem. Phys. Lett., 2019, vol. 728, pp. 67–61.

    Article  Google Scholar 

  4. Chen, C., Jia, N., Song, K., Zheng, X., Lan, Y., and Li, Y., Sulfur-doped copper-yttrium bimetallic oxides: A novel and efficient ozonation catalyst for the degradation of aniline, Sep. Purif. Technol., 2020, vol. 236, p. 116248.

    Article  CAS  Google Scholar 

  5. Baulin, O., Douillard, T., Fabrègue, D., Perez, M., Pelletier J.-M., and Bugnet, M., Three-dimensional structure and formation mechanisms of Y2O3 hollow-precipitates in a Cu-based metallic glass, Mater. Des., 2019, vol. 168, p. 107660.

    Article  CAS  Google Scholar 

  6. Dai, N., Wang, Y., Xu, B., Yang, L., Luan, H., and Li, J., Effect of yttrium oxide addition on absorption and emission properties of bismuth-doped silicate glasses, J. Rare Earths, 2012, vol. 30, no. 5, pp. 418–421.

    Article  CAS  Google Scholar 

  7. Feng, Z., Lou, B., Yin, M., Yeung, Y., Sun H.-T., and Duan, C.-K., First-principles study of Bi3+-related luminescence and electron and hole traps in (Y/Lu/La)PO4, Inorg. Chem., 2021, vol. 60, no. 7, pp. 4434–4446.

    Article  CAS  Google Scholar 

  8. Krasnikov, A., Mihokova, E., Nikl, M., Zazubovich, S., and Zhydachevskyy, Y., Luminescence spectroscopy and origin of luminescence centers in Bi-doped materials, Crystals, 2020, vol. 10, no. 3, p. 208.

    Article  CAS  Google Scholar 

  9. Scarangella, A., Fabbri, F., Reitano, R., Rossi, F., Priolo, F., and Miritello, M., Visible emission from bismuth-doped yttrium oxide thin films for lighting and display applications, Sci. Rep., 2017, vol. 7, p. 17325.

    Article  Google Scholar 

  10. Hughes, M.A., McMaster, R., Proctor, J.E., Hewak, D.W., Suzuki, T., and Ohishi, Y., High pressure photoluminescence of bismuth-doped yttria–alumina–silica glass, High Press. Res., 2022, vol. 42, no. 1, pp. 94–104.

    Article  CAS  Google Scholar 

  11. Li, Q., Zhang, B., Wei, Z., He, M., Wang, H., Wei, Z., and Shi, Z., Effect of Bi3+ ion concentration on crystal structure and luminescent properties of blue-green-emitting Y2O3:Bi3+ phosphors, Funct. Mater. Lett., 2020, vol. 13, no. 7, p. 2050036.

    Article  CAS  Google Scholar 

  12. Singh, O.S., Wangkhem, R., and Singh, N.S., Excitation and activator concentration induced color tuning and white light generation from Bi3+ sensitized Y2O3:Eu3+: Energy transfer studies, J. Alloys Compd., 2021, vol. 875, p. 160059.

    Article  CAS  Google Scholar 

  13. Jafer, R.M., Swart, H.C., Yousif, A., Kumar, V., and Coetsee, E., The effect of annealing temperature on the luminescence properties of Y2O3 phosphor powders doped with a high concentration of Bi3+, J. Lumin., 2016, vol. 180, pp. 198–203.

    Article  CAS  Google Scholar 

  14. Yousif, A., Kumar, V., Jafer, R.M., and Swart, H.C., The effect of different annealing temperatures on the structure and luminescence properties of Y2O3:Bi3+ thin film fabricated by RF magnetron sputtering, Appl. Surf. Sci., 2017, vol. 424, pp. 407–411.

    Article  CAS  Google Scholar 

  15. Korsunska, N., Baran, M., Poslishchuk, Y., Kolomys, O., Stara, T., Kharchenko, M., Gorban, O., Strelchuk, V., Venger, Ye., Kladko, V., and Khomenkova, L., Structural and luminescent properties of (Y,Cu)-codoped zirconia nanopowders, ECS J. Solid State Sci. Technol., 2015, vol. 4, no. 9, pp. N103–N110.

    Article  CAS  Google Scholar 

  16. Antropova, T., Girsova, M., Anfimova, I., Drozdova, I., Polyakova, I., and Vedishcheva, N., Structure and spectral properties of the photochromic quartz-like glasses activated by silver halides, J. Non-Cryst. Solids, 2014, vol. 401, pp. 139–141.

    Article  CAS  Google Scholar 

  17. Antropova, T.V., Girsova, M.A., Anfimova, I.N., Golovina, G.F., Kurilenko, L.N., and Firstov, S.V., Method of luminescent bismuth-containing quartz-like material based on high-silica porous glass, RF Patent no. 2605711, Byull. Izobret., 2016, no. 36.

  18. Lidin, R.A. Constants of Inorganic Substances: Reference Book / Lidin R.A., Andreeva L.L., Molochko V.A., Eds., Moscow: Drofa, 2008. p. 86, 104, 188.

  19. Yukhin, Yu.M. and Mikhailov, Yu.I., Chemistry of bismuth compounds and materials. Novosibirsk: Publishing House of the Siberian Branch of the Russian Acade-my of Sciences, 2001, pp. 122–137.

  20. Girsova, M.A., Golovina, G.F., Anfimova, I.N., Kurilenko, L.N., and Antropova, T.V., Effect of the Bi/Y ratio on the spectral properties of bismuth-containing composite materials based on silicate porous glasses, Glass Phys. Chem., 2022, vol. 48, no. 5, pp. 384–393.

    Article  CAS  Google Scholar 

  21. Girsova, M.A., Golovina, G.F., and Kurilenko, L.N., Infrared spectroscopy of composite materials based on high-silica porous glasses activated by bismuth and yttrium ions, Glass Phys. Chem., 2022, vol. 48, no. 6, pp. 588–593.

    Article  CAS  Google Scholar 

  22. Husung, R.D. and Doremus, R.H., The infrared transmission spectra of four silicate glasses before and after exposure to water, J. Mater. Res., 1990, vol. 5, no. 10, pp. 2209–2217.

    Article  CAS  Google Scholar 

  23. Reddy, D.V.K., Taherunnisa, Sk., Prasanna, A.L., Rao, T.S., Veeraiah, N., and Reddy, M.R., Enhancement of the red emission of Eu3+ by Bi3+ sensitizers in yttrium alumino bismuth borosilicate glasses, J. Mol. Struct., 2019, vol. 1176, pp. 133–148.

    Article  Google Scholar 

  24. Hammad, A.H., Abdelghany, A.M., and ElBatal, H.A., Thermal, structural, and morphological investigations of modified bismuth silicate glass-ceramics, Silicon, 2017, vol. 9, pp. 239–248.

    Article  CAS  Google Scholar 

  25. Kundu, R.S., Dult, M., Punia, R., Parmar, R., and Kishore, N., Titanium induced structural modifications in bismuth silicate glasses, J. Mol. Struct., 2014, vol. 1063, pp. 77–82.

    Article  CAS  Google Scholar 

  26. Fuss, T., Moguš-Milankovic, A., Ray, C.S., Lesher, C.E., Youngman, R., and Day, D.E., Ex situ XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate glass at high pressure, J. Non-Cryst. Solids, 2006, vol. 352, pp. 4101–4111.

    Article  CAS  Google Scholar 

  27. Kumar, G.R., Srikumar, T., Krishna, G.M., Baskaran, G.S., Reddy, A.S.S., Kumar, V.R., and Rao, Ch.S., The role of Ni2+ ions on structural and spectroscopic properties of Li2O–ZrO2–Y2O3–SiO2 glass system, J. Non-Cryst. Solids, 2018, vol. 498, pp. 372–379.

    Article  Google Scholar 

  28. Borgohain, K., Singh, J.B., Rao, M.V.R., Shripathi, T., and Mahamuni, S., Quantum size effects in CuO nanoparticles, Phys. Rev. B, 2000, vol. 61, no. 16, pp. 11093–11096.

    Article  CAS  Google Scholar 

  29. Romo, F.C., Murillo, A.G., Torres, D.L., Castro, N.C., Romero, V.H., de la Rosa, E., Febles, V.G., and Hernández, M.G., Structural and luminescence characterization of silica coated Y2O3:Eu3+ nanopowders, Opt. Mater., 2010, vol. 32, pp. 1471–1479.

    Article  Google Scholar 

  30. Haritha, A.H. and Rao, R.R., Sol-Gel synthesis and phase evolution studies of yttrium silicates, Ceram. Int., 2019, vol. 45, pp. 24957–24964.

    Article  CAS  Google Scholar 

  31. Luna-López, J.A., Carrillo-López, J., Aceves-Mijares, M., Morales-Sánchez, A., and Falcony, C., FTIR and photoluminescence of annealed silicon rich oxide films, Superfic. Vacío, 2009, vol. 22, no. 1, pp. 11–14.

    Google Scholar 

  32. Ananthamohan, C., Hogarth, C.A., Theocharis, C.R., and Yeates, D., Investigation of infrared absorption spectra of copper phosphate glasses containing some rare earth oxides, J. Mater. Sci., 1990, vol. 25, pp. 3956–3959.

    Article  CAS  Google Scholar 

  33. Shanmugapriya, T. and Balavijayalakshmi, J., Role of graphene oxide/yttrium oxide nanocomposites as a cathode material for natural dye-sensitized solar cell applications, Asia-Pacif. J. Chem. Eng., 2021, vol. 16, no. 2, p. e2598.

    Article  CAS  Google Scholar 

  34. Stefan, R., Culea, E., and Pascuta, P., The effect of copper ions addition on structural and optical properties of zinc borate glasses, J. Non-Cryst. Solids, 2012, vol. 358, no. 4, pp. 839–846.

    Article  CAS  Google Scholar 

  35. Sable, P., Thabet, N., Yaseen, J., and Dharne, G., Effects on structural morphological and optical properties pure and cuo/zno nanocomposite, Trends Sci., 2022, vol. 19, no. 24, р. 3092.

  36. Khlifi, N., Mnif, S., Nasr, F.B., Fourati, N., Zerrouki, C., Chehimi, M.M., Guermazi, H., Aifa, S., and Guermazi, S., Non-doped and transition metal-doped CuO nanopowders: Structure-physical properties and antiadhesion activity relationship, RSC Adv., 2022, vol. 12, pp. 23527–23543.

    Article  CAS  Google Scholar 

  37. Rachna Aghamkar, P., Morphological and optical investigation of Y2O3:SiO2 powder by wet chemical process, Opt. Mater., 2013, vol. 36, no. 2, pp. 337–341. https://doi.org/10.1016/j.optmat.2013.09.019

    Article  CAS  Google Scholar 

  38. Liu, T., Xu, W., Bai, X., and Song, H., Tunable silica shell and its modification on photoluminescent properties of Y2O3:Eu3+SiO2 nanocomposites, J. Appl. Phys., 2012, vol. 111, no. 6, p. 064312.

    Article  Google Scholar 

  39. Iordanescu, C.R., Tenciu, D., Feraru, I.D., Kiss, A., Bercu, M., Savastru, D., Notonier, R., and Grigorescu, C.E.A., Structure and morphology of Cu-oxides films derived from PLD processes, Digest J. Nanomater. Biostruct., 2011, vol. 6, no. 2, pp. 863–868.

    Google Scholar 

  40. Aghazadeh, M., Ghaemi, M., Golikand, A.N., Yousefi, T., and Jangju, E., Yttrium oxide nanoparticles prepared by heat treatment of cathodically grown yttrium hydroxide, Int. Scholarly Res. Not., 2011, vol. 2011, p. 542104.

    Book  Google Scholar 

  41. Gavrilko, T., Gnatyuk, I., Puchkovska, G., Baran, J., Marchewka, M., and Morawska-Kowal, T., Application of NIR spectroscopic method to the study of porous glasses filled with liquid crystals, Opt. Appl., 2003, vol. 33, no. 1, pp. 23–32.

    CAS  Google Scholar 

  42. Davis, K.M. and Tomozawa, M., An infrared spectroscopic study of water-related species in silica glasses, J. Non-Cryst. Solids, 1996, vol. 201, pp. 177–198.

    Article  CAS  Google Scholar 

  43. Humbach, O., Fabian, H., Grzesik, U., Haken, U., and Heitmann, W., Analysis of OH absorption bands in synthetic silica, J. Non-Cryst. Solids, 1996, vol. 203, pp. 19–26.

    Article  CAS  Google Scholar 

  44. Nikitin, V.A., Sidorov, A.N., and Karyakin, A.V., Study of the adsorption of ordinary and heavy water on microfloated glass using infrared absorption spectra, Zh. Fiz. Khim., 1956, vol. 30, no. 1, pp. 117–128.

    CAS  Google Scholar 

  45. Nigara, Y., Measurement of the optical constants of yttrium oxide, Jpn. J. Appl. Phys., 1968, vol. 7, no. 4, pp. 404–408.

    Article  CAS  Google Scholar 

  46. Peng, M., Zollfrank, C., and Wondraczek, L., Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature, J. Phys.: Condens. Matter, 2009, vol. 21, p. 285106.

  47. Plotnichenko, V.G., Philippovskiy, D.V., Sokolov, V.O., Golovanov, V.F., Polyakova, G.V., Lisitsky, I.S., and Dianov, E.M., Infrared luminescence in bismuth-doped AgCl crystals, Opt. Lett., 2013, vol. 38, no. 16, pp. 2965–2968.

    Article  CAS  Google Scholar 

  48. Bae, B.-S. and Weinberg, M.C., Optical absorption of copper phosphate glasses in the visible spectrum, J. Non-Cryst. Solids, 1994, vol. 168, no. 3, pp. 223–231.

    Article  CAS  Google Scholar 

  49. Zotov, N. and Keppler, H., The influence of water on the structure of hydrous sodium tetrasilicate glasses, Am. Mineralog., 1998, vol. 83, nos. 7–8, pp. 823–834.

    Article  CAS  Google Scholar 

  50. Sokolov, V.O., Plotnichenko, V.G., and Dianov, E.M., Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals, Opt. Express, 2013, vol. 21, no. 8, pp. 9324–9332.

    Article  CAS  Google Scholar 

  51. Solomonov, V.I., Osipov, V.V., Shitov, V.A., Luk’yashin, K.E., and Bubnova, A.S., Intrinsic luminescence centers in yttrium-aluminum garnet and yttrium oxide ceramics, Opt. Spectrosc., 2020, vol. 128, no. 1, pp. 1–5.

    Article  CAS  Google Scholar 

  52. Osipov, V.V., Rasuleva, A.V., and Solomonov, V.I., Luminescence of pure yttria, Opt. Spectrosc., 2008, vol. 105, no. 4, pp. 524–530.

    Article  CAS  Google Scholar 

  53. Boutinaud, P., On the luminescence of Bi3+ pairs in oxidic compounds, J. Lumin., 2018, vol. 197, pp. 228–232.

    Article  CAS  Google Scholar 

  54. Boutinaud, P., Revisiting the spectroscopy of the Bi3+ ion in oxide compounds, Inorg. Chem., 2013, vol. 52, pp. 6028–6038.

    Article  CAS  Google Scholar 

  55. Zhou, S., Jiang, N., Zhu, B., Yang, H., Ye, S., Lakshminarayana, G., Hao, J., and Qiu, J., Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers, Adv. Funct. Mater., 2008, vol. 18, no. 9, pp. 1407–1413.

    Article  CAS  Google Scholar 

  56. Krishnan, M.L., and Neethish, M.M., and Kumar, V.V.R.K., Structural and optical studies of rare earth-free bismuth silicate glasses for white light generation, J. Lumin., 2018, vol. 201, pp. 442–450.

    Article  CAS  Google Scholar 

  57. Dan, H.K., Phan, A.-L., Ty, N.M., Zhou, D., and Qiu, J., Optical bandgaps and visible/near-infrared emissions of Bin+-doped (n = 1, 2, and 3) fluoroaluminosilicate glasses via Ag+–K+ ions exchange process, Opt. Mater., 2021, vol. 112, p. 110762.

  58. Swart, H.C. and Kroon, R.E., Ultraviolet and visible luminescence from bismuth doped materials, Opt. Mater.: X, 2019, vol. 2, p. 100025.

    CAS  Google Scholar 

  59. Skuja, L., Optically active oxygen-deficiency-related centers in amorphous silicon dioxide, J. Non-Cryst. Solids, 1998, vol. 239, nos. 1–3, pp. 16–48.

    Article  CAS  Google Scholar 

  60. Zatsepin, A.F., Statics and dynamics of excited states of oxygen-deficient centers in SiO2, Phys. Solid State, 2010, vol. 52, no. 6, pp. 1176–1187.

    Article  CAS  Google Scholar 

  61. Hamzaoui H.El, Ouerdane, Y., Bigot, L., Bouwmans, G., Capoen, B., Boukenter, A., Girard, S., and Bouazaoui, M., Sol-gel derived ionic copper-doped microstructured optical fiber: A potential selective ultraviolet radiation dosimeter, Opt. Express, 2012, vol. 20, no. 28, pp. 29751–29760.

    Article  Google Scholar 

  62. Borsella, E., Vecchio, A.D., García, M.A., Sada, C., Gonella, F., Polloni, R., and Quaranta, A., and van Wilderen, L.J.G.W., Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study, J. Appl. Phys., 2002, vol. 91, no. 1, pp. 90–98.

    Article  CAS  Google Scholar 

  63. Švecová, B., Vařák, P., Vytykáčová, S., Nekvindová, P., Macková, A., Malinský, P., and Böttger, R., A study of the behaviour of copper in different types of silicate glasses implanted with Cu+ and O+ ions, Nucl. Instrum. Methods Phys. Res., Sect. B, 2017, vol. 406, part A, pp. 193–198.

Download references

ACKNOWLEDGMENTS

The authors thank A.V. Antonov (A.P. Karpinsky Russian Geological Research Institute, St. Petersburg) for the studies of CMs by energy-dispersive X-ray spectroscopy. The authors thank Dr. Sci. T.V. Antropova for her participation in the study of the luminescent properties of CMs and discussion of the results.

Funding

This work was supported by the Ministry of Sciences and Higher Education of the Russian Federation as part of the IChS RAS state assignment (state registration no. 1021050501068-5-1.4.3 (project FFEM-2022-0004)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Girsova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girsova, M.A., Golovina, G.F., Kurilenko, L.N. et al. Spectral Properties of Nanostructured Composite Glass Materials Activated by Yttrium in the Presence of Copper or Bismuth. Glass Phys Chem 49, 625–634 (2023). https://doi.org/10.1134/S1087659623600710

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600710

Keywords:

Navigation