Skip to main content
Log in

Compositional Effect on the Structure and Properties of MgO–Al2O3–SiO2 Ternary Glasses

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

MgO–Al2O3–SiO2 (MAS) glass has widespread applications due to the excellent chemical stability and mechanical strength. Accommodation of macroscopic properties requires a systematic investigation of the microstructure of glass caused by compositional adjustment. In this work, effects of progressive replacement of MgO by Al2O3 or SiO2 on glass structure and Vickers hardness were investigated. With the replacement of MgO by Al2O3 or SiO2, the glass network was strengthened, as a result, the glass transition temperature was increased and the crystallization tendency was weakened. The degree of structural changes caused by substitution of SiO2 for MgO is more significant than that of Al2O3 substitute for MgO. The strengthened glass network promotes the increase of Vickers hardness, and the coefficient of thermal expansion can be tailored in a large range. The results show that MAS glass maybe useful in the field of glass substrates for TFT–LCDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Tiegel, M., Herrmann, A., Rüssel, C., Körner, J., Klöpfel, D., Hein, J., and Kaluza, M.C., Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems, J. Mater. Chem. C, 2013, vol. 1, no. 33, pp. 5031–5039.

    Article  CAS  Google Scholar 

  2. Chen, C., Zhong, C., Zhang, Y., Li, A., Huang, S., Ze-ng, H., and Zu, Q., Structural and dynamic properties of MgO–Al2O3–SiO2 glasses from molecular dynamics simulations and NMR, Ceram. Int., 2022, vol. 48, no. 15, pp. 22 444–22 450.

    Article  Google Scholar 

  3. Dittmer, M., Müller, M., and Rüssel, C., Self-organized nanocrystallinity in MgO–Al2O3–SiO2 glasses with ZrO2 as nucleating agent, Mater. Chem. Phys., 2010, vol. 124, nos. 2–3, pp. 1083–1088.

    Article  CAS  Google Scholar 

  4. Belis, J., Louter, C., Nielsen, J.H., and Schneider, J., Architectural glass, in Springer Handbook of Glass, Musgraves, J.D., Hu, J., and Calvez, L., Eds., Part of Springer Handbooks, Cham: Springer, 2019.

  5. Hao, X., Hu, X., Luo, Z., Liu, T., Li, Z., Wu, T., Lu, A., and Tang, Y., Preparation and properties of transparent cordierite-based glass-ceramics with high crystallinity, Ceram. Int., 2015, vol. 41, no. 10, pp. 14130–14136.

    Article  CAS  Google Scholar 

  6. Lee, S.K., Kim, H., Kim, E.J., Mun, K.Y., and Ryu, S., Extent of disorder in magnesium aluminosilicate glasses: Insights from 27Al and 17O NMR, J. Phys. Chem. C, 2016, vol. 120, no. 1, pp. 737–749.

    Article  CAS  Google Scholar 

  7. Li, X., Cao, J., Wang, L., and Peng, M., Predictable tendency of Bi NIR emission in Bi-doped magnesium aluminosilicate laser glasses, J. Am. Ceram. Soc., 2018, vol. 101, no. 3, pp. 1159–1168.

    Article  CAS  Google Scholar 

  8. Han, L., Li, C., Lin, C., Liu, J., Wu, J., Gui, H., Zhang, Q., Luo, Z., Liu, T., and Lu, A., A novel Nd3+-doped MgO–Al2O3–SiO2-based transparent glass-ceramics: Toward excellent fluorescence properties, J. Am. Ceram. Soc., 2019, vol. 102, no. 7, pp. 4213–4225.

    Article  CAS  Google Scholar 

  9. Laguta, A.V., Denker, B.I., Sverchkov, S.E., and Razdobreev, I.M., A magneto-optical study of bismuth-doped MgO–Al2O3–SiO2 glass: On the nature of near-infrared luminescence, Quantum Electron., 2017, vol. 47, no. 2, pp. 123–134.

    Article  CAS  Google Scholar 

  10. Podda, O., Tissandier, L., Laplace, A., and Deloule, E., Solubility of uranium oxide in ternary aluminosilicate glass melts, J. Non-Cryst. Solids, 2022, vol. 595, pp. 121 845–121 854.

    Article  Google Scholar 

  11. Seidel, S., Dittmer, M., Wisniewski, W., Höland, W., and Rüssel, C., Effect of the ZrO2 concentration on the crystallization behavior and the mechanical properties of high-strength MgO–Al2O3–SiO2 glass-ceramics, J. Mater. Sci., 2017, vol. 52, no. 4, pp. 1955–1968.

    Article  CAS  Google Scholar 

  12. Ke, X., Shan, Z., Li, Z., Tao, Y., Yue, Y., and Tao, H., Toward hard and highly crack resistant magnesium aluminosilicate glasses and transparent glass-ceramics, J. Am. Ceram. Soc., 2020, vol. 103, no. 6, pp. 3600–3609.

    Article  CAS  Google Scholar 

  13. Li, H., Yin, Z., Deng, L., Wang, S., Fu, Z., and Ma, Y., Effect of SiO2/Al2O3 ratio on the structure and electrical properties of MgO–Al2O3–SiO2 glass-ceramics doped with TiO2, Mater. Chem. Phys., 2020, vol. 256, pp. 123 653–123 659.

    Article  Google Scholar 

  14. Lu, J., Wang, H., Li, Y., Zhou, Y., and Jiang, W., Effect of metastable phase on the crystallization and mechanical properties of MgO–Al2O3–SiO2 glass-ceramics without nucleating agents, Ceram. Int., 2023, vol. 49, no. 5, pp. 7737–7745.

    Article  CAS  Google Scholar 

  15. Machida, S., Maeda, K., Katsumata, K.-i., and Yasumori, A., Microstructural control of MgO–Al2O3–SiO2 glass-ceramics using titanium oxides with varying particle sizes and crystallinities as nucleation agents, J. Ceram. Soc. Jpn., 2023, vol. 131, no. 3, pp. 42–48.

    Article  CAS  Google Scholar 

  16. Liu, J., Li, C., Peng, H., Zeng, Q., and Lu, A., Preparation and characterization of alkali-free glass substrates with enhanced properties for TFT-LCDs applications, Ceram. Int., 2021, vol. 47, no. 15, pp. 21 650–21 659.

    Article  Google Scholar 

  17. Liu, J., Zou, Q., Zhang, Z., Zeng, Q., Peng, H., Wang, Q., and Chang, Q., Research on mixed alkaline-earth effect in non-alkali glass substrates for TFT-LCDs, J. Non-Cryst. Solids, 2022, vol. 579, pp. 121 372–121 379.

    Article  Google Scholar 

  18. Neuville, D., Cormier, L., Montouillout, V., Florian, P., Millot, F., Rifflet, J., and Massiot, D., Structure of Mg- and Mg/Ca aluminosilicate glasses: 27Al NMR and Raman spectroscopy investigations, Am. Mineral., 2008, vol. 93, nos. 11–12, pp. 1721–1731.

    Article  CAS  Google Scholar 

  19. Guignard, M. and Cormier, L., Environments of Mg and Al in MgO–Al2O3–SiO2 glasses: A study coupling neutron and X-ray diffraction and reverse Monte Carlo modeling, Chem. Geol., 2008, vol. 256, nos. 3–4, pp. 111–118.

    Article  CAS  Google Scholar 

  20. Kalampounias, A., Nasikas, N., and Papatheodorou, G., Glass formation and structure in the MgSiO3–Mg2SiO4 pseudobinary system: From degraded networks to ioniclike glasses, J. Chem. Phys., 2009, vol. 131, no. 11, pp. 114 513–114 520.

    Article  Google Scholar 

  21. Shimoda, K., Tobu, Y., Hatakeyama, M., Nemoto, T., and Saito, K., Letter: Structural investigation of Mg local environments in silicate glasses by ultra-high field 25Mg 3QMAS NMR spectroscopy, Am. Mineral., 2007, vol. 92, no. 4, pp. 695–698.

    Article  CAS  Google Scholar 

  22. Sen, S., Maekawa, H., and Papatheodorou, G., Short-range structure of invert glasses along the pseudo-binary join MgSiO3–Mg2SiO4: Results from 29Si and 25Mg MAS NMR spectroscopy, J. Phys. Chem. B, 2009, vol. 113, no. 46, pp. 15 243–15 248.

    Article  Google Scholar 

  23. Wilding, M., Benmore, C., Tangeman, J., and Sampath, S., Evidence of different structures in magnesium silicate liquids: Coordination changes in forsterite- to enstatite-composition glasses, Chem. Geol., 2004, vol. 213, nos. 1–3, pp. 281–291.

    Article  CAS  Google Scholar 

  24. Kubicki, J. and Lasaga, A., Molecular dynamics simulations of pressure and temperature effects on MgSiO3 and Mg2SiO4 melts and glasses, Phys. Chem. Miner., 1991, vol. 17, no. 8, pp. 661–673.

    Article  CAS  Google Scholar 

  25. Fiske, P. and Stebbins, J., The structural role of Mg in silicate liquids: A high-temperature 25Mg, 23Na, and 29Si NMR study, Am. Mineral., 1994, vol. 79, nos. 9 10, pp. 848–861.

    CAS  Google Scholar 

  26. Watts, S., Hill, R., O’Donnell, M., and Law, R., Influence of magnesia on the structure and properties of bioactive glasses, J. Non-Cryst. Solids, 2010, vol. 356, nos. 9–10, pp. 517–524.

    Article  CAS  Google Scholar 

  27. Kolay, S. and Bhargava, P., Role of MgO in lowering glass transition temperature and increasing hardness of lithium silicate glass and glass-ceramics, Ceram. Int., 2022, vol. 48, no. 9, pp. 12 699–12 711.

    Article  Google Scholar 

  28. Merzbacher, C.I. and White, W.B., The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy, J. Non-Cryst. Solids, 1991, vol. 130, no. 1, pp. 18–34.

    Article  CAS  Google Scholar 

  29. Neuville, D., Cormier, L., and Massiot, D., Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 24, pp. 5071–5079.

    Article  CAS  Google Scholar 

  30. Neuville, D., Cormier, L., and Massiot, D., Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy, Chem. Geol., 2006, vol. 229, nos. 1–3, pp. 173–185.

    Article  CAS  Google Scholar 

  31. Neuville, D., Cormier, L., Montouillout, V., and Massiot, D., Local Al site distribution in aluminosilicate glasses by 27Al MQMAS NMR, J. Non-Cryst. Solids, 2007, vol. 353, no. 2, pp. 180–184.

    Article  CAS  Google Scholar 

  32. Neuville, D., Cormier, L., Ligny, D., Roux, J., Flank, A., and Lagarde, P., Environments around Al, Si, and Ca in aluminate and aluminosilicate melts by X-ray absorption spectroscopy at high temperature, Am. Mineral., 2008, vol. 93, no. 1, pp. 228–234.

    Article  CAS  Google Scholar 

  33. Smedskjaer, M., Youngman, R., and Mauro, J., Impact of ZnO on the structure and properties of sodium aluminosilicate glasses: Comparison with alkaline earth oxides, J. Non-Cryst. Solids, 2013, vol. 381, pp. 58–64.

    Article  CAS  Google Scholar 

  34. Park, S. and Lee, S., High-resolution solid-state NMR study of the effect of composition on network connectivity and structural disorder in multi-component glasses in the diopside and jadeite join: Implications for structure of andesitic melts, Geochim. Cosmochim. Acta, 2014, vol. 147, no. 1, pp. 26–42.

    Article  CAS  Google Scholar 

  35. Seidel, S., Dittmer, M., Höland, W., and Rüssel, C., High-strength, translucent glass-ceramics in the system MgO–ZnO–Al2O3–SiO2–ZrO2, J. Eur. Ceram. Soc., 2017, vol. 37, no. 7, pp. 2685–2694.

    Article  CAS  Google Scholar 

  36. Sun, L., Fang, J., Guo, S., Shan, T., Wen, Y., Liu, C., and Zhang, J., Effect of MgO/Al2O3 ratio on the crystallization behaviour of Li2O–MgO–Al2O3–SiO2 glass-ceramic and its wettability on Si3N4 ceramic, Ceram. Int., 2022, vol. 48, no. 14, pp. 20 053–20 061.

    Article  Google Scholar 

  37. Lao, X. and Xu, X., Effect of MgO/SiO2 ratio and Al2O3 content on crystallization behavior and properties of cordierite-based glass-ceramics, J. Eur. Ceram. Soc., 2021, vol. 41, no. 2, pp. 1593–1602.

    Article  Google Scholar 

  38. Veit, U. and Rüssel, C., Viscosity and liquidus temperature of quaternary glasses close to an eutectic composition in the CaO–MgO–Al2O3–SiO2 system, J. Mater. Sci., 2017, vol. 52, no. 13, pp. 8280–8292.

    Article  CAS  Google Scholar 

  39. Sun, K.-H., Fundamental condition of glass formation, J. Am. Ceram. Soc., 1947, vol. 30, no. 9, pp. 277–281.

    Article  CAS  Google Scholar 

  40. Sun, Y., Wang, H., and Zhang, Z., Understanding the relationship between structure and thermophysical properties of CaO–SiO2–MgO–Al2O3 molten slags, Metall. Mater. Trans. B, 2018, vol. 49, no. 2, pp. 677–687.

    Article  CAS  Google Scholar 

  41. Zhang, Y., Li, H., Liu, S., Wu, N., and Ou Yang, S., Raman spectroscopic study of irregular network in the process of glass conversion to CaO–MgO–Al2O3–SiO2 glass-ceramics, J. Non-Cryst. Solids, 2021, vol. 563, pp. 120 701–120 707.

    Article  Google Scholar 

  42. Matson, D., Sharma, S., and Philpotts, J., The structure of high-silica alkali-silicate glasses. A Raman spectroscopic investigation, J. Non-Cryst. Solids, 1983, vol. 58, nos. 2–3, pp. 323–352.

    Article  CAS  Google Scholar 

  43. Yadav, A.K. and Singh, P., A review of the structures of oxide glasses by Raman spectroscopy, RSC Adv., 2015, vol. 5, no. 83, pp. 67 583–67 609.

    Article  Google Scholar 

  44. McKeown, D., Galeener, F., and Brown, G., Raman studies of Al coordination in silica-rich sodium aluminosilicate glasses and some related minerals, J. Non-Cryst. Solids, 1984, vol. 68, nos. 2–3, pp. 361–378.

    Article  CAS  Google Scholar 

  45. Losq, C., Neuville, D., Florian, P., Henderson, G., and Massiot, D., The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts, Geochim. Cosmochim. Acta, 2014, vol. 126, no. 1, pp. 495–517.

    Article  Google Scholar 

  46. Kim, T. and Park, J., Structure-viscosity relationship of low-silica calcium aluminosilicate melts, ISIJ Int., 2014, vol. 54, no. 9, pp. 2031–2038.

    Article  CAS  Google Scholar 

  47. Guo, Y., Liu, C., Wang, J., Ruan, J., Xie, J., Han, J., Deng, Z., and Zhao, X., Effects of alkali oxides and ion-exchange on the structure of zinc–alumino–silicate glasses and glass-ceramics, J. Eur. Ceram. Soc., 2022, vol. 42, no. 2, pp. 576–588.

    Article  CAS  Google Scholar 

  48. McMillan, P.F., Poe, B.T., Gillet, P.H., and Reynard, B., A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature Raman spectroscopy, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 17, pp. 3653–3664.

    Article  CAS  Google Scholar 

  49. Zheng, K., Liao, J., Wang, X., and Zhang, Z., Raman spectroscopic study of the structural properties of CaO–MgO–SiO2–TiO2 slags, J. Non-Cryst. Solids, 2013, vol. 376, pp. 209–215.

    Article  CAS  Google Scholar 

  50. Mysen, B., Physics and chemistry of silicate glasses and melts, Eur. J. Mineral., 2003, vol. 15, no. 5, pp. 781–802.

    Article  CAS  Google Scholar 

  51. Lin, S. and Hwang, C., Structures of CeO2–Al2O3–SiO2 glasses, J. Non-Cryst. Solids, 1996, vol. 202, nos. 1–2, pp. 61–67.

    Article  CAS  Google Scholar 

  52. Aronne, A., Esposito, S., and Pernice, P., FTIR and DTA study of lanthanum aluminosilicate glasses, Mater. Chem. Phys., 1997, vol. 51, no. 2, pp. 163–168.

    Article  CAS  Google Scholar 

  53. Guo, Y., Wang, J., Ruan, J., Han, J., Xie, J., and Liu, C., Microstructure and ion-exchange properties of glass-ceramics containing ZnAl2O4 and β-quartz solid solution nanocrystals, J. Eur. Ceram. Soc., 2021, vol. 41, no. 10, pp. 5331–5340.

    Article  CAS  Google Scholar 

  54. Han, L., Song., J., Lin, C., Liu, J., Liu, T., Zhang, Q., Luo, Z., and Lu, A., Crystallization, structure and properties of MgO–Al2O3–SiO2 highly crystalline transparent glass-ceramics nucleated by multiple nucleating agents, J. Eur. Ceram. Soc., 2018, vol. 38, no. 13, pp. 4533–4542.

    Article  CAS  Google Scholar 

  55. McMillan, P. and Piriou, B., The structures and vibrational spectra of crystals and glasses in the silica-alumina system, J. Non-Cryst. Solids, 1982, vol. 53, no. 3, pp. 279–298.

    Article  CAS  Google Scholar 

  56. Hutton, W. and Thorp, J.S., The vibrational spectra of MgO–Al2O3–SiO2 glasses containing TiO2, J. Mater. Sci., 1985, vol. 20, no. 2, pp. 542–551.

    Article  CAS  Google Scholar 

  57. Saikia, B.J. and Parthasarathy, G., Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India, J. Mod. Phys., 2010, vol. 1, no. 4, pp. 206–210.

    Article  CAS  Google Scholar 

  58. Merzbacher, C.I., Sherriff, B.L., Hartman, J.S., and White, W.B., A high-resolution 29Si and 27Al NMR study of alkaline earth aluminosilicate glasses, J. Non-Cryst. Solids, 1990, vol. 124, nos. 2–3, pp. 194–206.

    Article  CAS  Google Scholar 

  59. Guo, Y., Liu, C., Wang, J., Ruan, J., Li, X., Han, J., and Xie, J., Effect of ZrO2 crystallization on ion exchange properties in aluminosilicate glass, J. Eur. Ceram. Soc., 2020, vol. 40, no. 5, pp. 2179–2184.

    Article  CAS  Google Scholar 

  60. Merzbacher, C.I., McGrath, K.J., and Higby, P.L., 29Si NMR and infrared reflectance spectroscopy of low-silica calcium aluminosilicate glasses, J. Non-Cryst. Solids, 1991, vol. 136, no. 3, pp. 249–259.

    Article  CAS  Google Scholar 

  61. Diallo, B., Allix, M., Véron, E., Sarou-Kanian, V., Bardez-Giboire, I., Montouillout, V., and Pellerin, N., Deconvolution method of 29Si MAS NMR spectra applied to homogeneous and phase separated lanthanum aluminosilicate glasses, J. Non-Cryst. Solids, 2019, vols. 503–504, pp. 352–365.

    Article  Google Scholar 

  62. Lin, X., Huang, Q., Liu, L., Zhang, Y., Ning, T., Lu, A., and Jiang, Y., Analysis of unconventional boron-aluminum anomaly induced by mixed alkaline earth effect in glass substrate, Mater. Chem. Phys., 2022, vol. 282, pp. 125 973–125 983.

    Article  Google Scholar 

  63. Helfinstine, J.D., Gulati, S.T., and Ono, T., 6.2: Mechanical properties of Jade™ glass substrate for LTPS application, SID Symp. Digest Tech. Papers, 2012, vol. 39, no. 1, pp. 51–53.

  64. Lapp, J.C., Glass substrates for AMLCD applications: Properties and implications, Proc. SPIE, 1997, vol. 3014, pp. 2–9.

    Article  CAS  Google Scholar 

  65. Ellison, A. and Cornejo, I.A., Glass substrates for liquid crystal displays, Int. J. Appl. Glass Sci., 2010, vol. 1, no. 1, pp. 87–103.

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (52202026, 62175192).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunlan Guo or Chao Liu.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadong Lu, Xie, J., Guo, Y. et al. Compositional Effect on the Structure and Properties of MgO–Al2O3–SiO2 Ternary Glasses. Glass Phys Chem 49, 573–583 (2023). https://doi.org/10.1134/S1087659623600242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600242

Keywords:

Navigation