Skip to main content
Log in

Molecular Dynamics Modeling of the Grade E Borosilicate Glass Structure Using a Crystal Structural Template

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A new method for molecular dynamics (MD) modeling of the glass structure using a crystal structural template is proposed. The template is based on the unit cell of the crystalline phase, whose composition is qualitatively similar to the modeled glass. Using this approach and multistage MD simulation, the model of the spatial structure of grade E borosilicate glass, reproducing its physicochemical characteristics, is obtained. The proposed method enables to model the glass structure using classical MD methods with greater productivity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Christie, J., Ainsworth, R., Hernandez, S., and de Leeuw, N., Structures and properties of phosphate-based bioactive glasses from computer simulation: A review, J. Mater. Chem. B, 2017, vol. 5, pp. 5297–5306.

    Article  CAS  Google Scholar 

  2. Cormack, A.N., Yuan, X., and Park, B., Molecular dynamics simulations of silicate glasses and melts, Glass Phys. Chem., 2001, vol. 27, pp. 28–36.

    Article  CAS  Google Scholar 

  3. Liang, J.-J., Cygan, R., and Alam, T., Molecular dynamics simulation of the structure and properties of lithium phosphate glasses, J. Non-Cryst. Solids, 2000, vols. 263–264, pp. 167–179.

    Google Scholar 

  4. Jia, B., Li, M., Yan, X., Wang, Q., and He, S., Structure investigation of CaO-SiO2-Al2O3-Li2O by molecular dynamics simulation and Raman spectroscopy, J. Non-Cryst. Solids, 2019, vol. 526, p. 119695.

    Article  CAS  Google Scholar 

  5. Hu, Y.-J., Zhao, G., Zhang, M., Bin, B., Rose, T.D., Zhao, Q., Zu, Q., Chen, Y., and Sun, X., Predicting densities and elastic moduli of SiO2 based glasses by machine learning, npj Comput. Mater., 2020, vol. 6, pp. 1–13.

    Google Scholar 

  6. Deng, B. and Harris, J.T., A novel approach to generate glass-ceramics samples for molecular dynamics simulations, Comput. Mater. Sci., 2021, vol. 186, p. 110008.

    Article  CAS  Google Scholar 

  7. Hong, X. and Newville, M., Polyamorphism of GeO2 glass at high pressure, Phys. Status Solidi B, 2020, vol. 257, p. 2000052.

    Article  CAS  Google Scholar 

  8. Brazhkin, V.V., Lyapin, A.G., and Trachenko, K., Atomistic modeling of multiple amorphous–amorphous transitions in SiO2 and GeO2 glasses at megabar pressures, Phys. Rev. B, 2011, vol. 83, p. 132103.

    Article  Google Scholar 

  9. Tsuchiya, T., Yamanaka, T., and Matsui, M., Molecular dynamics study of pressure-induced transformation of quartz-type GeO2, Phys. Chem. Miner., 2000, vol. 27, pp. 149–155.

    Article  CAS  Google Scholar 

  10. Kapoor, S., Goel, A., Tilocca, A., Dhuna, V., Bhatia, G., Dhuna, K., and Ferreira, J.M., Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses, Acta Biomater., 2014, vol. 10, pp. 3264–3278.

    Article  CAS  Google Scholar 

  11. Upadhyay, A., Sebeck, K., and Kieffer, J., Spectral mode assignment for binary silicate glasses using molecular dynamics simulations, J. Non-Cryst. Solids, 2012, vol. 358, pp. 3348–3354.

    Article  CAS  Google Scholar 

  12. Chainikova, A., Orlova, L., Popovich, N., Lebedeva, Y., and Solncev, S., Functional composites based on glass/glass-ceramics matrixes and discrete fillers: Properties and possible applications, Aviat. Mater. Technol., 2014, vol. 0, pp. 52–58.

    Google Scholar 

  13. Wang, X., Xie, W., Ren, J., Zhu, J., Li, L.-Y., and Xing, F., Interfacial binding energy between calcium-silicate-hydrates and epoxy resin: A molecular dynamics study, Polymers, 2021, vol. 13, p. 1683.

    Article  CAS  Google Scholar 

  14. Babaevskii, P.G., Napolniteli dlya polimernykh kompozitsionnykh materialov: Spravochnoe posobie (Fillers for Polymer Composite Materials, Reference Book), Moscow: Khimiya, 1981.

  15. Mishnev, M., Korolev, A., Ekaterina, B., and Dmitrii, U., Effect of long-term thermal relaxation of epoxy binder on thermoelasticity of fiberglass plastics: Multiscale modeling and experiments, Polymers, 2022, vol. 14, p. 1712.

    Article  CAS  Google Scholar 

  16. Maslov, V., Grozdov, A., and Kutepov, D., Methods of determining the composition of low-molecular weight epoxide diane resins, Polym. Sci. (USSR), 1982, vol. 24, pp. 2034–2039.

    Article  Google Scholar 

  17. Vaitkus, A., Merkys, A., and Grazulis, S., Validation of the crystallography open database using the crystallographic information framework, J. Appl. Crystallogr., 2021, vol. 54, pp. 661–672.

    Article  CAS  Google Scholar 

  18. Abraham, M.J., Murtola, T., Schulz, R., Pall, S., Smith, J.C., Hess, B., and Lindahl, E., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 2015, vols. 1–2, pp. 19–25.

    Article  Google Scholar 

  19. Makarov, G.I., Shilkova, K.S., Shunailov, A.V., Pavlov, P.V., and Makarova, T.M., A set of self-consistent Lennard-Jones potential parameters for molecular dynamics simulation of borosilicate glasses, Glass Phys. Chem., 2023, vol. 49, in press.

  20. Bussi, G., Donadio, D., and Parrinello, M., Canonical sampling through velocity rescaling, J. Chem. Phys., 2007, vol. 126, pp. 014107–014106.

    Article  Google Scholar 

  21. Berendsen, H., Postma, J., van Gunsteren, W., Di Nola, A., and Haak, J., Molecular dynamics with coupling to an external bath, J. Chem. Phys., 1984, vol. 81, pp. 3684–3690.

    Article  CAS  Google Scholar 

  22. Darden, T., York, D., and Pedersen, L., Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems, J. Chem. Phys., 1993, vol. 98, pp. 10089–10092.

    Article  CAS  Google Scholar 

  23. Wennberg, C.L., Murtola, T., Hess, B., and Lindahl, E., Lennard-Jones lattice summation in bilayer simulations has critical effects on surface tension and lipid properties, J. Chem. Theory Comput., 2013, vol. 9, pp. 3527–3537.

    Article  CAS  Google Scholar 

  24. Gale, J. and Rohl, A., The General Utility Lattice Program (GULP), Mol. Simul., 2003, vol. 29, pp. 291–341.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a grant from the Russian Ministry of Science and Higher Education (FENU 2023-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Makarov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, G.I., Makarova, T.M. Molecular Dynamics Modeling of the Grade E Borosilicate Glass Structure Using a Crystal Structural Template. Glass Phys Chem 49, 635–641 (2023). https://doi.org/10.1134/S1087659623600631

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600631

Keywords:

Navigation