Skip to main content
Log in

Effects of Different Quenching Rate on the Various Properties of Fe–Si–B Amorphous Alloy Prepared by Melt Spinning Method

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In this work an attempt is made to study the impact of the quenching rate upon structure, hyperfine interactions, magnetic and mechanical properties of Fe78Si9B13 metallic glasses. Other involved parameters in melt spinning method were kept invariant. Analytical techniques comprising X-ray diffraction, transmission Mössbauer spectrometry, vibration sample magnetometer, Vickers microhardness and differential scanning calorimetry were employed. Minor effect of quenching rate upon the macroscopic magnetic properties was detected. It was shown that notable changes in the local atomic arrangement, structure, and mechanical properties were unveiled, dominantly by represent the crystallization at the lowest quenching rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFRENCES

  1. Nu, N.T.N. and Luong, T.V., Potential application of metallic glasses, Int. J. Sci. Environ. Technol., 2016, vol. 5, pp. 2209–2216.

    Google Scholar 

  2. Huang, L., Wang, C.Z., Hao, S.G., Kramer, M.J., and Ho, K.M., Short-and medium-range order in amorphous Zr2Ni metallic alloy, Phys. Rev. B, 2010, vol. 81, no. 9, p. 094118.

    Article  Google Scholar 

  3. Hsu, C.H., Chang, Y.H., Lee, C.Y., Yao, C.S., He, Y.L., Chu, H.L., Chang, C.W., and Chan, W.S., Effects of magnetomechanical vibrations and bending stresses on three-phasethree-leg transformers with amorphous cores, J. Appl. Phys., 2012, vol. 111, no. 7, p. 07E730.

  4. Wu, C.Y., Lin, K.J., Cheng, Y.T., Huang, C.K., Pan, C.N., Li, W.C., Chiang, L.K., Yeh, C.N., and Fong, S.C., Development of amorphous ribbon manufacturing technology, China Steel Tech. Rep., 2014, vol. 27, pp. 28–42.

    Google Scholar 

  5. Ye, S., Li, X., Bian, X., Wang, W., Yin, L., and An, B., Remelting treatment and heredity phenomenon in the formation of Fe78Si9B13 amorphous alloy, Alloys Compd., 2013, vol. 562, pp. 143–149.

    Article  CAS  Google Scholar 

  6. Cadogan, J.M., Campbell, S.J., Jing, J., Foley, C.P., Kater, P., and Mai, Y.W., Annealing embrittlement of Fe78Si9B13, Hyperfine Interact., 2014, vol. 226, pp. 7–14.

    Article  CAS  Google Scholar 

  7. Zeeshan, M.A., Ojos, D.E., Hartmann, P. Guerrero, C., Nogués, M., Suriñach, J.S., Baró, M.D., Nelson, B.J., Pané, S., Pellicer, E., and Sort, J., Electrochemically synthesized amorphous and crystalline nanowires: Dissimilar nanomechanical behavior in comparison with homologous flat films, Nanoscale, 2016, vol. 8, no. 3, pp. 1344–1351.

    Article  CAS  Google Scholar 

  8. Bhatnagar, A.K., Mössbauer studies of iron-rich metallic glasses, Hyperfine Interact., 1985, vol. 25, pp. 637–666.

    Article  CAS  Google Scholar 

  9. Li, F.C., Liu, T., Zhang, J.Y., Shuang, S., Wang, Q., Wang, A.D., Wang, J.G., and Yang, Y., Amorphouse-nanocrystalline alloys: Fabrication, properties, and applications, Mater. Today Adv., 2019, vol. 4, p. 100027.

    Article  Google Scholar 

  10. Gavrila, H. and Ionita, V., Crystalline and amorphous soft magnetic materials and their applications—status of art and challenges, J. Optoelectron. Adv. Mater., 2002, vol. 4, no. 21, pp. 173–192.

    CAS  Google Scholar 

  11. Soltani, M.L., Touares, A., Aboki, T.A.M., and Gasser, J., Thermal effect on structural and magnetic properties of Fe78B13Si9 annealed amorphous ribbons, EPJ Web Conf., 2017, vol. 151, p. 07002.

  12. Mohammadiparsa, N., Habibi, S., and Dekan, J., Mössbauer study and magnetic properties of Fe–Si–B–Cu amorphous systems with minor substitution of carbon, J. Radioanal. Nucl. Chem., 2019, vol. 322, pp. 691–697.

    Article  CAS  Google Scholar 

  13. Xu.J., Yang., Y., Li, W., Xie, Zh., and Chen, X., Effect of Si addition on crystallization behavior, thermal ability and magnetic properties in high Fe content Fe–Si–B–P–Cu–C alloy, Mater. Res. Bull., 2018, vol. 97, pp. 452–456.

  14. Azuma, D., Ito, N., and Ohta, M., Recent progress in Fe-based amorphous and nanocrystalline soft magnetic materials, J. Magn. Magn. Mater., 2020, vol. 501, p. 166373.

    Article  CAS  Google Scholar 

  15. Hufnagel, T.C., Schuh, C.A., and Falk, M.L., Deformation of metallic glasses: Recent developments in theory, simulations, and experiments, Acta Mater., 2016, vol. 109, pp. 375–393.

    Article  CAS  Google Scholar 

  16. Gu, X.J., Poon, S.J., Shiflet, G.J., and Widom, M., Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure, Acta Mater., 2008, vol. 56, no. 1, pp. 88–94.

    Article  CAS  Google Scholar 

  17. Wang, A., Zhao, C., He, A., Men, H., Chang, C., and Wang, X., Composition design of high B s Fe-based amorphous alloys with good amorphous-forming ability, J. Alloys Compd., 2016, vol. 656, pp. 729–734.

    Article  CAS  Google Scholar 

  18. Mohanty, U.K. and Sarangi, H., Solidification of metals and alloys, in Casting Processes and Modelling of Metallic Materials, London, UK: IntechOpen, 2020.

    Google Scholar 

  19. Meng, L.L., Li, X.Y., Pang, J., Wang, L., et al., Casting atmosphere effects on the precipitates, magnetism, and corrosion resistance of Fe78Si9B13 glassy alloys, Metal. Mater. Trans. A, 2013, vol. 44, pp. 5122–5133.

    Article  CAS  Google Scholar 

  20. Sarafrazian, S., Ghasemi, A., and Tavoosi, M., Magnetic characterization of nanocrystalline Fe14Nd2B1 alloy during melt spinning and subsequent annealing, J. Magn. Magn. Mater., 2016, vol. 402, pp. 115–123.

    Article  CAS  Google Scholar 

  21. Gui, H.M., Wei, G., Hui, W.Y., Min, L., and Hadimani, M.L., Electromagnetic wave absorbing properties and hyperfine interactions of Fe–Cu–Nb–Si–B nanocomposites, Chin. Phys. B, 2014, vol. 23, p. 083301.

    Article  Google Scholar 

  22. Xu, M., Teng, X., and Geng, J., Effect of cooling rates on solidification and microstructure of rapidly solidified Mg57Zn37Y6 quasicrystal alloy, J. Mater. Res., 2015, vol. 30, no. 21, pp. 3324–3330.

    Article  CAS  Google Scholar 

  23. Sohrabi, S., Arabi, H., Beitollahi, A., and Gholamipour, R., Planar flow casting of Fe71Si13.5B9Nb3Cu1Al1.5Ge1 ribbons, J. Mater. Eng. Perform., 2013, vol. 22, p. 2185.

    Article  CAS  Google Scholar 

  24. Shahri, F. and Beitollahi, A., Effect of super-heat treatment and quenching wheel speed on the structure and magnetic properties of Fe–Si–Nb–Cu–B–Al–Ge melt spun ribbons, J. Non-Cryst. Solids, 2008, vol. 354, no. 14, pp. 1487–1493.

    Article  CAS  Google Scholar 

  25. Murugaiyan, P., Mitra, A., Bijalwan, P., Roy, R.K., Dutta, M., Banerjee, A., and Panda, A.K., Glass forming ability and soft-magnetic properties of Fe-based glassy alloys developed using high phosphorous pig iron, J. Alloys Compd., 2020, vol. 821, p. 153255.

    Article  CAS  Google Scholar 

  26. Jiang, B., Wang, J., Xu, L., Qian, Ch., Liu, T., Dai, J., and Hou, X., Tunable mechanical properties of Ti–Zr–Ni–Cr–V amorphous ribbons via different melt spinning speeds during rapid solidification process, Materials, 2018, vol. 11, no. 6, p. 947.

    Article  Google Scholar 

  27. Babu, D.A., Majumdar, B., Sarkar, R., Akhtar, D., and Chandrasekaran, V., Effect of processing parameters on the microstructure and soft magnetic properties of Fe88Zr7B4Cu1 alloy ribbons, J. Phys. D, 2008, vol. 41, p. 195002.

    Article  Google Scholar 

  28. Babu, D.A., Srivastava, A.P., Majumdar, B., Srivastava, D., and Akhtar, D., Influence of melt-spinning parameters on the structure and soft magnetic properties of (Fe0.65Co0.35)88Zr7B4Cu1 alloy, Metall. Mater. Trans. A, 2010, vol. 41, pp. 1313–1320.

    Article  Google Scholar 

  29. Allia, P., Tiberto, P., Barico, M., Knobel, M., and Vinai, F., Nanostructured materials for soft magnetic applications produced by fast dc Joule heating, IEEE Trans. Magn., 1994, vol. 30, pp. 4797–4799.

    Article  CAS  Google Scholar 

  30. Knobel, M., Sinnecker, J.P., and Saenger, J.F., and Turtelli, R.S., Effect of as-cast topological disorder on the magnetic properties of nanocrystalline Fe73.5Cu1Nb3Si13.5B9, Philos. Mag. B, 1993, vol. 68, pp. 861–867.

    Article  CAS  Google Scholar 

  31. Srinivas, M., Majumdar, B., Akhtar, D., Srivastava, A.P., and Srivastava, D., Influence of wheel speed during planar flow melt spinning on the microstructure and soft magnetic properties of Fe68.5Si18.5B9Nb3Cu1 ribbons, J. Mater. Sci., 2011, vol. 46, pp. 616–622.

    Article  CAS  Google Scholar 

  32. Brand, R.A., User’s Guide of the Normos Mössbauer Fitting Program, Starnberg: Wissenschaftlich Elektronik, 1992.

    Google Scholar 

  33. Hosseini-Nasb, F., Beitollahi, A., and Moravvej-Farshi, M.K., The effect of quenching rate on structure and soft magnetic properties of high B s Fe-based nanocrystalline alloys, Adv. Mater. Res., 2014, vol. 829, pp. 78–81.

    Article  Google Scholar 

  34. Del Muro, M.G., Zquiak, R., and Batlle, X., The effect of quenching rate on the nanocrystallization of amorphous Fe–Cu–Nb–Si–B, J. Magn. Magn. Mater., 1997, vol. 171, no. 3, pp. 315–319.

    Article  Google Scholar 

  35. Gonser, U., From a strange effect to Mössbauer spectroscopy, in Mössbauer Spectroscopy, Gonser, U., Ed., Berlin: Springer, 1975, pp. 1–51.

    Book  Google Scholar 

  36. Panda, A.K., Chattoraj, I., Basu, S., and Mitra, A., Influence of quench rates on the properties of rapidly solidified FeNbCuSiB alloy, Bull. Mater. Sci., 2002, vol. 25, pp. 573–575.

    Article  CAS  Google Scholar 

  37. Ghannami, M.E., Kulik, T., Hernando, A., Barquin, L.F., Sal, J.C.G., Gorria, P., and Barandiaran, J.M., Influence of the preparation conditions on the magnetic properties and electrical resistivity of Fe73.5Nb3Cu1Si13.5B9 nanocrystalline alloys, J. Magn. Magn. Mater., 1994, vol. 133, pp. 314–316.

    Article  Google Scholar 

  38. Sun, X., Cabral-Prieto, A., Jose Yacaman, M., Reyes-Gasga, J., Hernandez-Reyes, R., Morales, A., and Sun, W., Nanocrystallization behavior and magnetic properties of amorphous Fe78Si9B13 ribbons, Phys. B (Amsterdam), 2000, vol. 291, pp. 173–179.

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safdar Habibi.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narges Amini, Safdar Habibi & Mohammadiparsa, N. Effects of Different Quenching Rate on the Various Properties of Fe–Si–B Amorphous Alloy Prepared by Melt Spinning Method. Glass Phys Chem 49, 617–624 (2023). https://doi.org/10.1134/S1087659622600752

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622600752

Keywords:

Navigation