Skip to main content
Log in

Effect of Conditions of Mannitol-Nitrate Synthesis on Photocatalytic Properties of φ-Bi8Pb5O17

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The article presents the results of a study of new ceramic materials φ-Bi8Pb5O17 obtained by pyrolysis using mannitol C6H14O6 as a reducing fuel. The values of the band gap of the obtained compositions are determined by analyzing the diffuse reflectance spectra using the Tauc construction. They are in the range from 2.57 to 2.67 eV, which corresponds to visible light photocatalysts. The degree of degradation of methylene orange when using synthesized samples ranged from 95 to 99% when irradiated for 3 h with a fluorescent mercury lamp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Radaev, S.F., Simonov, V.I., and Kargin, Yu.F., Structural features of γ-phase Bi2O3 and its place in the sillenite family, Acta Crystallogr., 1992, vol. 48, pp. 604–609.

    Article  Google Scholar 

  2. Harwig, H.A., On the structure of bismuthsesquioxide: The α, β, γ, and δ-phase, Z. Anorg. Allgem. Chem., 1978, vol. 444, pp. 151–166.

    Article  CAS  Google Scholar 

  3. Harwig, H.A. and Gerards, A.G., The polymorphism of bismuth sesquioxide, Thermochim. Acta, 1979, vol. 28, pp. 121–131.

    Article  CAS  Google Scholar 

  4. Sammes, N.M., Tompsett, G.A., Näfe, H., and Aldinger, F., Bismuth based oxide electrolytes – structure and ionic conductivity, J. Eur. Ceram., 1999, vol. 19, pp. 1801–1826.

    Article  CAS  Google Scholar 

  5. Cornei, N., Tancret, N., Abraham, F., and Mentre, O., New ε-Bi2O3 metastable polymorph, Inorg. Chem., 2006, vol. 45, pp. 4886–4888.

    Article  CAS  Google Scholar 

  6. Gualtieri, A.F., Imovilli, S., and Prudenziati, M., Powder X-ray diffraction data for the new polymorphic compound ω-Bi2O3, Powder Diffract., 1997, vol. 12, no. 2, pp. 90–92.

    Article  CAS  Google Scholar 

  7. Ghedia, S., Locherer, T., Dinnebier, R., Prasad, D.L.V.K., Wedig, U., Jansen, M., and Senyshyn, A., High-pressure and high-temperature multianvil synthesis of metastable polymorphs of Bi2O3: Crystal structure and electronic properties, Phys. Rev., 2010, vol. 82, pp. 1–12.

    Article  Google Scholar 

  8. Atou, T., Faqir, H., Kikuchi, M., Chiba, H., and Syono, Y., A new high-pressure phase of bismuth oxide, Mater. Res. Bull., 1998, vol. 33, pp. 289–292.

    Article  CAS  Google Scholar 

  9. Drache, M., Roussel, P., and Wignacourt, J.-P., Structures and oxide mobility in Bi–Ln–O materials: Heritage of Bi2O3, Chem. Rev., 2007, vol. 107, pp. 80–96.

    Article  CAS  Google Scholar 

  10. Biefeld, R.M. and White, S.S., Temperature/composition phase diagram of the system Bi2O3–PbO, J. Am. Ceram. Soc., 1981, vol. 64, no. 3, pp. 182–184.

    Article  CAS  Google Scholar 

  11. Dapčević, A., Poleti, D., Karanović, L., and Miladinović, J., Investigation of Bi2O3-rich part of Bi2O3–PbO phase diagram, J. Serb. Chem. Soc., 2017, vol. 82, no. 12, pp. 1433–1444.

    Article  Google Scholar 

  12. Diop, I., David, N., Fiorani, J.M., Podor, R., and Vilasi, M., Experimental investigations and thermodynamic description of the PbO-Bi2O3 system, J. Chem. Thermodyn., 2009, vol. 41, pp. 420–432.

    Article  CAS  Google Scholar 

  13. Rangavittal, N., Gururow, T.N., and Rao, C.N.R., A study of cubic bismuth oxides of the type Bi26 – xMxO40 – δ (M = Ti, Mn, Fe, Co, Ni or Pb) related to γ-Bi2O3, Eur. J. Solid State Inorg. Chem., 1994, vol. 31, pp. 409–422.

    CAS  Google Scholar 

  14. Righi, L., Calestani, G., Gemmi, M., Migliori, A., and Bettinelli, M., Neutron diffraction study of φ‑Bi8Pb5O17: Structure refinement and analysis of cationic ordering, Acta Crystallogr., 2001, vol. 57, pp. 237–243.

    Article  CAS  Google Scholar 

  15. Valant, M. and Suvorov, D., A stoichiometric model for sillenites, Chem. Mater., 2002, vol. 14, pp. 3471–3476.

    Article  CAS  Google Scholar 

  16. Borowiec, M.T., Kozankiewicz, B., Szymczak, H., Zmija, J., Majchrowski, A., Zaleski, M., and Zayarnyuk, T., Photoconductivity of Bi12Ti1 – xPbxO20 single crystal, Acta. Phys. Polon., 1999, vol. 96, pp. 785–792.

    Article  CAS  Google Scholar 

  17. Sammes, N.M., Tompsett, G., and Cartner, A.M., Characterization of bismuth lead oxide by vibrational spectroscopy, J. Mater. Sci., 1995, vol. 30, pp. 4299–4308.

    Article  CAS  Google Scholar 

  18. Fee, M.G. and Long, N.J., Mixed conductivity in metal-doped bismuth-lead oxide, Solid State Ion., 1996, vols. 86–88, pp. 733–737.

    Article  Google Scholar 

  19. Fee, M.G., Sammes, N.M., Tomsett, G., Soto, T., and Cartner, A.M., The effect of heat treatment on the physical and electrical properties of the fast ion conductor Bi8Pb5O17, Solid State Ionics, 1997, vol. 95, pp. 183–189.

    Article  CAS  Google Scholar 

  20. Chawla, H., Chandra, A., Ingole, P.P., and Garg, S., Recent advancements in enhancement of photocatalytic activity using bismuth-based metal oxides Bi2MO6 (M = W, Mo, Cr) for environmental remediation and clean energy production, J. Ind. Eng. Chem., 2021, vol. 95, pp. 1–15.

    Article  CAS  Google Scholar 

  21. Li, Z., Zhang, Z., Wang, L., and Meng, X., Bismuth chromate (Bi2CrO6): A promising semiconductor in photocatalysis, J. Catal., 2020, vol. 382, pp. 40–48.

    Article  CAS  Google Scholar 

  22. Ershov, D.S., Besprozvannykh, N.V., and Sinelshchikova, Yu.O., Synthesis and photocatalytic and electrophysical properties of ceramic materials in the PbO–Bi2O3–Fe2O3 system, Russ. J. Inorg. Chem., 2022, vol. 67, pp. 105–113.

    Article  CAS  Google Scholar 

  23. Watanabe, A., Kitami, Y., Takenouchi, S., Bovin, J.O., and Sammes, N., Polymorphism in Bi5Pb3O10.5, J. Solid State Chem., 1999, vol. 144, pp. 195–204.

    Article  CAS  Google Scholar 

  24. Santarosa, M., Righi, L., Gemmi, M., Speghini, A., Migliori, A., Calestani, G., and Bettinelli, M., Structural properties and thermal stability of Bi8Pb5O17 fast ion conducting phases, Solid State Chem., 1999, vol. 144, pp. 255–262.

    Article  CAS  Google Scholar 

  25. Zhang, Y., Sammes, N., and Du, Y., The use of X-ray analysis in determining the crystal structure in φ-Bi8Pb5O17, Solid State Ion., 1999, vol. 124, pp. 179–184.

    Article  CAS  Google Scholar 

  26. Gemmi, M., Righi, L., Calestani, G., Migliori, A., Speghini, A., San Tarosa, M., and Bettinelli, M., Structure determination of φ-Bi8Ob5O17 by electron and powder X-ray diffraction, Ultramicroscopy, 2000, vol. 84, pp. 133–142.

    Article  CAS  Google Scholar 

  27. Ganesan, R., Gnanasekaran, T., and Srinivasa, R.S., Standard molar gibbs energy of formation of Pb5Bi8O17 and PbBi12O19 and phase diagram of the Pb–Bi–O system, J. Nucl. Mater., 2008, vol. 375, pp. 229–242.

    Article  CAS  Google Scholar 

  28. Shtarev, D.S., Shtareva, A.V., Makarevich, K.S., and Pereginyak, M.V., RF Patent no. 2595343, Byull. Izobret., 2016, no. 24.

  29. Besprozvannykh, N.V., Ershov, D.S., Sinel’shchikova, O.Yu., and Ugolkov, V.L., Ceramic materials based on bismuth chromates, their synthesis by combustion with mannitol, photocatalytic and conductive properties, Ceram. Int., 2023, vol. 49, no. 10, pp. 16182–16190.

    Article  CAS  Google Scholar 

  30. Wang, B., Wang, S., Gong, L., and Zhou, Z., Structural, magnetic and photocatalytic properties of Sr2+-doped BiFeO3 nanoparticles based on an ultrasonic irradiation assisted self-combustion method, Ceram. Int., 2012, vol. 38, pp. 6643–6649.

    Article  CAS  Google Scholar 

  31. Tauc, J., Grigorovici, R., and Vancu, A., Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B, 1966, vol. 15, pp. 627–637.

    Article  CAS  Google Scholar 

  32. Shyamkumar, S., Reshmi, P.R., Muthuambika, T., Parida, S.K., and Ganesan, R., The standard molar enthalpies of formation of PbBi12O19(s) and φ-Pb5Bi8O17(s) by solution calorimetry, J. Chem. Thermodyn., 2021, vol. 155, p. 106351.

    Article  CAS  Google Scholar 

  33. Mukasyan, A.S., Costello, C., Sherlock, K.P., Lafarga, D., and Varma, A., Perovskite membranes by aqueous combustion synthesis: Synthesis and properties, Sep. Purif. Technol., 2001, vol. 25, pp. 117–126.

    Article  CAS  Google Scholar 

  34. Denisova, L.T., Irtyugo, L.A., Beletskii, V.V., and Belousova, N.V., High-temperature heat capacity and thermodynamic properties of oxide compounds of Bi2O3–PbO, Zh. Sib. Fed. Univ., Ser.: Khim., 2015, vol. 8, no. 4, pp. 514–520.

    Google Scholar 

Download references

Funding

This study was carried out as part of state task no. 0081-2022-0008 of the Institute of Silicate Chemistry of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Ershov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershov, D.S., Besprozvannykh, N.V. & Sinelshchikova, O.Y. Effect of Conditions of Mannitol-Nitrate Synthesis on Photocatalytic Properties of φ-Bi8Pb5O17. Glass Phys Chem 49, 680–686 (2023). https://doi.org/10.1134/S1087659623600679

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600679

Keywords:

Navigation