Skip to main content

Advertisement

Log in

Characterization Study of some Bauxite Deposits in Northern Brazil

  • Review
  • Published:
Clays and Clay Minerals

Abstract

Alumina is produced from bauxite, which contains a mixture of various oxides, such as aluminum (Al), iron (Fe), silicon (Si), and titanium (Ti). Bauxite can also be considered a source of several other valuable metals, such as scandium (Sc), vanadium (V), and gallium (Ga). The composition and mineralogy of alumina determine their economic value, but their characteristics vary by locality. The physicochemical characteristics of bauxites can also be influenced largely by weathering processes, even within the same locality. For this reason, the present study was undertaken with the objective of comparing the characterization data of three bauxite samples collected, which will be referred to as D, E, and F, from the Cruz Alta do Pará plateau in northern Brazil. The samples were solubilized by multi-acid digestion and fusion with lithium metaborate to quantify their metal compositions by inductively coupled plasma optical emission spectrometry (ICP-OES). The mineralogical characterization was conducted by X-ray diffraction (XRD), and the phase changes of minerals in bauxite were detected by thermogravimetric analysis (TGA/DTG). The total organic carbon (TOC) technique was used to quantify the C in the samples, and the moisture content was also measured. Alumina was 30 wt.% on average for all samples, good for producing high-purity alumina by hydrometallurgical processes. The results, however, showed high (~20 at.%) silica concentrations in two samples and ~3 wt.% Fe in one sample, which can pose a challenge in the Bayer process. The X-ray diffraction (XRD) analysis showed that gibbsite (Gbs), kaolinite (Kln), anatase (Ant), and hematite (Hem) were the major mineral phases in these samples. The study showed that the samples from the same mine vary in their metal content, especially with regard to Si, and they, thus, need to be processed selectively to maximize their economic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdulvaliyev, R. A., Dyussenova, S. B., Manapova, A. I., Akcil, A., & Beisenbiyeva, U. Z. (2021). Modification of the phase composition of low-grade gibbsite-kaolinite bauxites. Kompleksnoe Ispolʹzovanie Mineralʹnogo Syrʹâ/complex Use of Mineral Resources/mineraldik Shikisattardy Keshendi Paidalanu, 317, 94–102.

    Google Scholar 

  • Abedini, A., Mongelli, G., & Khosravi, M. (2022a). Geochemistry of the early Jurassic Soleiman Kandi karst bauxite deposit, Irano-Himalayan belt, NW Iran: Constraints on bauxite genesis and the distribution of critical raw materials. Journal of Geochemical Exploration, 241, 107056.

    CAS  Google Scholar 

  • Abedini, A., Khosravi, M., & Mongelli, G. (2022b). The middle Permian pyrophyllite-rich ferruginous bauxite, northwestern Iran, Irano-Himalayan karst belt: Constraints on elemental fractionation and provenance. Journal of Geochemical Exploration, 233, 106905.

    CAS  Google Scholar 

  • Agrawal, S., & Dhawan, N. (2021). Evaluation of microwave acid baking on Indian red mud sample. Minerals Engineering, 160, 106686.

    CAS  Google Scholar 

  • Ahmad, I., Hartge, E. U., Werther, J., & Wischnewski, R. (2014). Bauxite washing for the removal of clay. International Journal of Minerals, Metallurgy and Materials, 21, 1045–1051.

    ADS  CAS  Google Scholar 

  • Alelweet, O., & Pavia, S. (2022). Pozzolanic and hydraulic activity of bauxite for binder production. Journal of Building Engineering, 51, 104186.

    Google Scholar 

  • Arogundade, A. I., Megat-yusoff, P. S. M., Ahmad, F., Bhat, A. H., & Afolabi, L. O. (2021). Modification of bauxite residue with oxalic acid for improved performance in intumescent coatings. Journal of Materials Research and Technology, 12, 679–687.

    CAS  Google Scholar 

  • Banerjee, P.K., Mankar, A.U., & Kumar, V. (2023) Beneficiation of bauxite ores. P. in: Mineral Processing: Beneficiation Operations and Process Optimization through Modeling. INC, 117–166 pp

  • Baudín, C. (2021) Alumina, Structure and Properties. Pp. 25–46 in: Encyclopedia of Materials: Technical Ceramics and Glasses. Elsevier. https://doi.org/10.1016/B978-0-12-818542-1.00028-X

  • Behmadi, R., Mokhtarian, M., Ghadrian, K., Davoodi, A., & Hosseinpour, S. (2022). Development of a low-cost activated mesoporous bauxite for the reclamation of used transformer oil. Separation and Purification Technology, 280, 119826.

    CAS  Google Scholar 

  • Botelho, A. B. J., Espinosa, D. C. R., & Tenório, J. A. S. (2020). Characterization of Bauxite Residue from a Press Filter System: Comparative Study and Challenges for Scandium Extraction. Mining, Metallurgy & Exploration, 38, 16.

    Google Scholar 

  • Botelho, A. B. J., Crocce, D. E., & Tenório, J. A. S. (2021). Selective separation of Sc (III) and Zr (IV) from the leaching of bauxite residue using trialkylphosphine acids, tertiary amine, tri-butyl phosphate and their mixtures. Separation and Purification Technology, 279, 13.

    Google Scholar 

  • Castaldi, P., Silvetti, M., Santona, L., Enzo, S., & Melis, P. (2008). XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals. Clays and Clay Minerals, 56, 461–469.

    ADS  CAS  Google Scholar 

  • Castaldi, P., Silvetti, M., Enzo, S., & Deiana, S. (2011). X-ray diffraction and thermal analysis of bauxite ore-processing waste (red mud) exchanged with arsenate and phosphate. Clays and Clay Minerals, 59, 189–199.

    ADS  CAS  Google Scholar 

  • César, C., Melo, A., Simões, R., Patrícia, S., & Paz, A. (2020). A proposal for rapid grade control of gibbsitic bauxites using multivariate statistics on XRD data. Minerals Engineering, 157, 106539.

    Google Scholar 

  • Chen, Z., Wang, Y., Liao, S., & Huang, Y. (2020). Grinding kinetics of waste glass powder and its composite effect as pozzolanic admixture in cement concrete. Construction and Building Materials, 239, 117876.

    CAS  Google Scholar 

  • Chu, T. P. M., Nguyen, N. T., Vu, T. L., Dao, T. H., Dinh, L. C., Nguyen, H. L., Hoang, T. H., Le, T. S., & Pham, T. D. (2019). Synthesis, characterization, and modification of alumina nanoparticles for cationic dye removal. Materials, 12(450), 1–15.

    Google Scholar 

  • Clark, M. W., Johnston, M., & Reichelt-Brushett, A. J. (2015). Comparison of several different neutralisations to a bauxite refinery residue: Potential effectiveness environmental ameliorants. Applied Geochemistry, 56, 1–10.

    ADS  CAS  Google Scholar 

  • Dani, N., Formoso, M. L. L., Decarreau, A., & Meunier, A. (2001). Nordstrandite in bauxite derived from phonolite, lages, Santa Catarina, Brazil. Clays and Clay Minerals, 49, 216–226.

    ADS  CAS  Google Scholar 

  • Dillinger, B., Batchelor, A., Katrib, J., Dodds, C., Suchicital, C., Kingman, S., & Clark, D. (2020). Microwave digestion of gibbsite and bauxite in sodium hydroxide. Hydrometallurgy, 192, 105257.

    CAS  Google Scholar 

  • Dodoo, D., Ellen, G., Seguwa, E., Yawson, C., Appiah, G., Suleiman, N., & Yaya, A. (2022). Eco-efficient treatment of hazardous bauxite liquid-residue using acid-activated clays. Cleaner Chemical Engineering, 3, 100040.

    Google Scholar 

  • Fabre, C., Buche, P., Rouau, X., & Mayer-laigle, C. (2020). Milling itineraries dataset for a collection of crop and wood by-products and granulometric properties of the resulting powders. Data in Brief, 33, 106430.

    PubMed  PubMed Central  Google Scholar 

  • Freitas, V., Hulmann, A., Zimmer, J., Barbeiro, L., Gomes, R., Thomy, M., & Dultra, M. (2018). Soil quality and reforestation of the Brazil nut tree (Bertholletia excelsa Bonpl.) after laterite-type bauxite mining in the Brazilian Amazon forest. Ecological Engineering, 125, 111–118.

    Google Scholar 

  • Giels, M., Hertel, T., Gijbels, K., Schroeyers, W., & Pontikes, Y. (2022). High performance mortars from vitrified bauxite residue; the quest for the optimal chemistry and processing conditions. Cement and Concrete Research, 155, 106739.

    CAS  Google Scholar 

  • Gräfe, M., Power, G., & Klauber, C. (2011). Bauxite residue issues: III. Alkalinity and Associated Chemistry. Hydrometallurgy, 108, 60–79.

    Google Scholar 

  • Habashi, F. (1997). Handbook of Extractive Metallurgy. Volume II: Primary Metals, Secondary Metals, Light Metals. Heidelberg, Germany: Wiley-VCH.

  • Hill, V. G. (1980). Proceedings, 4th International Congress for the Study of Bauxites, Alumina and Aluminum. Vol. 1, Bauxites; Vol. 2, Bauxites; Vol. 3, Alumina and Aluminum. Clays and Clay Minerals, 28, 70.

    ADS  MathSciNet  Google Scholar 

  • Jiang, Z., Quan, X., Zhao, S., Zeng, K., Chen, H., & Zhou, Y. (2021). Dealkalization and leaching behavior of Fe, Al, Ca, and Si of Red Mud by waste acid from titanium white production. ACS Omega, 6, 32798–32808.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khairul, M. A., Zanganeh, J., & Moghtaderi, B. (2019). The composition, recycling and utilisation of Bayer red mud. Resources, Conservation and Recycling, 141, 483–498.

    Google Scholar 

  • Kyriakogona, K., Giannopoulou, I., & Panias, D. (2017). Extraction of aluminium from Kaolin: A comparative study of hydrometallurgical processes. Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering, 133, 2–7.

    Google Scholar 

  • Lagauche, M., Larmier, K., Jolimaitre, E., & Barthelet, K. (2017). Thermodynamic characterization of the hydroxyl group on the γ - alumina surface by the energy distribution function. Journal of Physical Chemistry C, 121, 16770–167822.

    CAS  Google Scholar 

  • Li, C., Tang, L., Jiang, J., Zhu, F., Zhou, J., & Xue, S. (2020a). Alkalinity neutralization and structure upgrade of bauxite residue waste via synergistic pyrolysis with biomass. Journal of Environmental Sciences, 93, 41–47.

    CAS  Google Scholar 

  • Li, P., Yu, W., Du, Y., Lai, X., Weng, S., Pang, D., Xiong, G., Lei, Z., Zhao, S., & Yang, S. (2020b). Influence of geomorphology and leaching on the formation of Permian bauxite in northern Guizhou Province, South China. Journal of Geochemical Exploration, 210, 106446.

    CAS  Google Scholar 

  • Li, H., Chai, W., Cao, Y., & Yang, S. (2022). Flotation enhancement of low-grade bauxite using oxalic acid as surface pretreatment agent. Applied Surface Science, 577, 151964.

    CAS  Google Scholar 

  • Liu, R. X., & Poon, C. S. (2016). Effects of red mud on properties of self-compacting mortar. Journal of Cleaner Production, 135, 1170–1178.

    Google Scholar 

  • Liu, S., Li, Q., Xie, G., Li, L., & Xiao, H. (2016). Effect of grinding time on the particle characteristics of glass powder. Powder Technology, 295, 133–141.

    CAS  Google Scholar 

  • Liu, S., Zhang, J., Sun, Z., & Han, D. (2023). Effects of temperature and pressure fluctuations on exergy loss characteristics of hydrogen auto-ignition processes. International Journal of Hydrogen Energy, 48, 38484–38495.

    CAS  Google Scholar 

  • Luo, J., Rao, M., Liu, M., Li, G., & Jiang, T. (2014). (2014) Extraction of Alumina from Coal-Derived Pyrite Flotation Tailing by Pre-Desilication-Bayer Process. Light Metals, 9781118889, 125–130.

    Google Scholar 

  • Manjare, S. D., & Donolikar, Y. (2022). Effect of atmospheric and operational variables on dispersion of bauxite particulates at Mormugaon Port, Goa, India. Materials Today: Proceedings, 67, 1190–1196.

    CAS  Google Scholar 

  • Melo, C. C. A., Angélica, R. S., & Paz, S. P. A. (2020). A proposal for rapid grade control of gibbsitic bauxites using multivariate statistics on XRD data. Minerals Engineering, 157, 106539.

    CAS  Google Scholar 

  • Mohan, B., Kloss, C., Khinast, J., & Radl, S. (2014). Regimes of liquid transport through sheared beds of inertial smooth particles. Powder Technology, 264, 377–395.

    CAS  Google Scholar 

  • Mondillo, N., Di, M., Kalaitzidis, S., Boni, M., Santoro, L., & Balassone, G. (2022). Petrographic and geochemical features of the B3 bauxite horizon (Cenomanian-Turonian) in the Parnassos-Ghiona area : A contribution towards the genesis of the Greek karst bauxites. Ore Geology Reviews, 143, 104759.

    Google Scholar 

  • Mondillo, N., Herrington, R., & Boni, M. (2021) Bauxites. Encyclopedia of Geology, 694–707

  • Muriel, B. H., Bressan, S., Allard, T., Morin, G., Roig, J.-Y., Couëffé, R., Aertgeerts, G., Derycke, A., Ansart, C., Pinna-Jamme, R., & Gautheron, C. (2022). Reading the climate signals hidden in bauxite. Geochimica et Cosmochimica Acta, 323, 40–73.

    ADS  Google Scholar 

  • Nguyen, V.D., Ngo, S.H., Nguyen, V.L., & Huynh, T.P. (2023) Incorporation of high loss-on-ignition fly ash into high-strength mortar: Influence on short-term engineering properties. Materials Today: Proceedings, In Press, 1–5. https://doi.org/10.1016/j.matpr.2023.03.531

  • Ostap, S. (1986). Control of silica in the Bayer Process used for alumina production. Canadian Metallurgical Quarterly, 25, 101–106.

    ADS  CAS  Google Scholar 

  • Pang, D., Yu, W., Chen, Q., Du, Y., Dai, X., Deng, K., Wu, B., Deng, X., & Zhou, J. (2023) Continental weathering led to the accumulation of Early Carboniferous bauxite deposits in the SW South China Craton. Journal of Asian Earth Sciences, In Press, 1–6

  • Power, G., & Loh, J. (2010). Organic compounds in the processing of lateritic bauxites to alumina: Part 1: Origins and chemistry of organics in the Bayer process. Hydrometallurgy, 105, 1–29.

    CAS  Google Scholar 

  • Power, G., Loh, J. S. C., & Vernon, C. (2012). Organic compounds in the processing of lateritic bauxites to alumina Part 2: Effects of organics in the Bayer process. Hydrometallurgy, 127–128, 125–149.

    Google Scholar 

  • Ruys, A. (2019a) Bauxite: The principal aluminum ore. Pp. 39–47 in: Alumina Ceramics. Elsevier

  • Ruys, A. (2019b) Refining of alumina: The Bayer process. Pp. 49–70 in: Alumina Ceramics. Elsevier

  • Santini, T. C. (2015). Application of the Rietveld refinement method for quantification of mineral concentrations in bauxite residues (alumina refining tailings). International Journal of Mineral Processing, 139, 1–10.

    CAS  Google Scholar 

  • Smith, P., & Power, G. (2021). High Purity Alumina-Current and Future Production. Mineral Processing and Extractive Metallurgy Review, 13, 747–756.

    Google Scholar 

  • Tabereaux, A.T. & Peterson, R.D. (2014) Aluminum Production. P. in: Treatise on Process Metallurgy, Volume 3: Industrial Processes. 839–917

  • Valeev, D., Pankratov, D., Shoppert, A., Sokolov, A., Kasikov, A., Mikhailova, A., Salazar-concha, C., & Rodionov, I. (2021). Mechanism and kinetics of iron extraction from high silica boehmite − kaolinite bauxite by hydrochloric acid leaching. Transactions of Nonferrous Metals Society of China, 31, 3128–3149.

    CAS  Google Scholar 

  • Wang, C., Lucas, R., Milward, M., & Cooper, P. R. (2021). Particle Size Effects on Abrasion, Surface Polishing and Stain Removal Efficacy in a Tooth Model System. Biotribology, 28, 100196.

    Google Scholar 

  • Wu, S. Z., Chau, K. T., & Yu, T. X. (2004). Crushing and fragmentation of brittle spheres under double impact test. Powder Technology, 143–144, 41–55.

    Google Scholar 

  • Wu, Y. S., Zhang, D., Li, M. C., Bi, S. W., & Yang, Y. H. (2010). Periodical attenuation of Al(OH)3 particles from seed precipitation in seeded sodium aluminate solution. Transactions of Nonferrous Metals Society of China, 20, 528–532.

    CAS  Google Scholar 

  • Wu, Y., Zhou, K., Zhang, X., Peng, C., Jiang, Y., & Chen, W. (2022a). Aluminum separation by sulfuric acid leaching-solvent extraction from Al-bearing LiFePO4/ C powder for recycling of Fe/P. Waste Management, 144, 303–312.

    CAS  PubMed  Google Scholar 

  • Wu, Z., Lv, H., Xie, M., Li, L., Zhao, H., & Liu, F. (2022b). Reaction behavior of quartz in gibbsite-boehmite bauxite in Bayer digestion and its effect on caustic consumption and alumina recovery. Ceramics International, 48, 18676–18686.

    CAS  Google Scholar 

  • Xue, S. G., Wu, Y. J., Li, Y. W., Kong, X. F., Zhu, F., William, H., Li, X. F., & Ye, Y. Z. (2019). Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review. Central South University of Technology. Journal of Central South University, 26, 268–288.

    CAS  Google Scholar 

  • Yadav, S.K., Banerjee, A., Jhariya, M.K., Meena, R.S., Khan, N., & Raj, A. (2022) Eco-restoration of bauxite mining: An ecological approach. P. in: Natural Resources Conservation and Advances for Sustainability. 173–193 pp

  • Zhang, J., Bai, Y., Dong, H., Wu, Q., & Ye, X. (2014). Influence of ball size distribution on grinding effect in horizontal planetary ball mill. Advanced Powder Technology, 25, 983–990.

    Google Scholar 

  • Zhang, X., Huestis, P. L., Pearce, C. I., Hu, J. Z., Page, K., Anovitz, L. M., Aleksandrov, A. B., Prange, M. P., Kerisit, S., Bowden, M. E., Cui, W., Wang, Z., Jaegers, N. R., Graham, T. R., Dembowski, M., Wang, H., Liu, J., Diaye, A. T. N., Bleuel, M., … Rosso, K. M. (2018). Boehmite and Gibbsite Nanoplates for the Synthesis of Advanced Alumina Products. ACS Applied Nano Materials, 1, 7115–7128.

    CAS  Google Scholar 

  • Zhang, X., Cui, W., Hu, J. Z., Wang, H., Prange, M. P., Wan, C., Jaegers, N. R., Zong, M., Zhang, H., Pearce, C. I., Li, P., Wang, Z., Clark, S. B., & Rosso, K. M. (2019). Transformation of Gibbsite to Boehmite in Caustic Aqueous Solution at Hydrothermal Conditions. Crystal Growth Design, 19, 5557–5567.

    CAS  Google Scholar 

  • Zhang, J., Wang, Q., Liu, X., Zhou, G., Xu, H., & Zhu, Y. (2022). Provenance and ore-forming process of Permian lithium-rich bauxite in central Yunnan. SW China. Ore Geology Reviews, 145, 104862.

    Google Scholar 

  • Zhou, J., Ma, S., Chen, Y., Ning, S., Wei, Y., & Fujita, T. (2021). Recovery of scandium from red mud by leaching with titanium white waste acid and solvent extraction with P204. Hydrometallurgy, 204, 105724.

    CAS  Google Scholar 

  • Zhou, G., Wang, Y., Qi, T., Zhou, Q., Liu, G., Peng, Z., & Li, X. (2023). Chemical Engineering Toward sustainable green alumina production : A critical review on process discharge reduction from gibbsitic bauxite and large-scale applications of red mud. Journal of Environmental Chemical Engineering, 11, 109433.

    CAS  Google Scholar 

  • Zhu, X., Niu, Z., Li, W., Zhao, H., & Tang, Q. (2020). A novel process for recovery of aluminum, iron, vanadium, scandium, titanium and silicon from red mud. Journal of Environmental Chemical Engineering, 8, 103528.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of Mineradora Rio do Norte (MRN) and the Brazilian Company of Research and Industrial Innovation (EMBRAPII-TECNOGREEN 41829). Grant 2019/11866-5 São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgana Rosset.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Associate Editor: Yuji Arai

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 104 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Rocha Pereira, B., Rosset, M., de Oliveria Lima, J.D. et al. Characterization Study of some Bauxite Deposits in Northern Brazil. Clays Clay Miner. 71, 707–721 (2023). https://doi.org/10.1007/s42860-023-00264-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-023-00264-2

Keywords

Navigation