Skip to main content
Log in

An Investigation of the Effects of Parameters on the Development of Nuggets and the Tensile Properties of IN-625 During Resistance Spot Welding

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

A thermomechanical finite element (FE) model was used to examine the effects of resistance spot welding (RSW) current intensity, time, and electrode force on the distribution of temperatures and the size of nuggets of IN-625 superalloy sheets. In order to evaluate and optimize the mechanical properties of RSW welded IN-625 alloy, a procedure was developed based on simulation results. A taguchi L9 experimental design was used to study the mechanical properties of welded samples as a function of peak load, failure mode, and energy. According to the findings, joint fracture modes and strength are significantly influenced by process parameters. Consequently, welding current, electrode force, and welding time all had significant impacts on the shear strength of IN-625 Alloy spot welding joints, with impacts of 62.05%, 24.06%, and 12.84%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lin H-L, Chou T, Chou C-P (2007) Optimization of resistance spot welding process using Taguchi method and a neural network. Exp Tech 31:30–36

    Article  Google Scholar 

  2. Mashhuriazar A, Hakan Gur C, Sajuri Z, Omidvar H (2021) Effects of heat input on metallurgical behavior in HAZ of multi-pass and multi-layer welded IN-939 superalloy. J Mater Res Technol 15:1590–1603. https://doi.org/10.1016/j.jmrt.2021.08.113

    Article  CAS  Google Scholar 

  3. Mashhuriazar A, Omidvar H, Sajuri Z et al (2020) Effects of pre-weld heat treatment and heat input on metallurgical and mechanical behaviour in HAZ of Multi-pass Welded IN-939 Superalloy. Metals (Basel) 10:1453

    Article  CAS  Google Scholar 

  4. Mashhuriazar A, Omidvar H, Gur CH, Sajuri Z (2020) Effect of welding parameters on the liquation cracking behavior of high-chromium Ni-Based Superalloy. J Mater Eng Perf 1–10

  5. Haghshenas N, Moshayedi H (2020) Monitoring of resistance spot welding process. Exp Tech 44:99–112

    Article  Google Scholar 

  6. Shaikh AS, Schulz F, Minet-Lallemand K, Hryha E (2021) Microstructure and mechanical properties of Haynes 282 superalloy produced by laser powder bed fusion. Mater Today Commun 26:102038

    Article  CAS  Google Scholar 

  7. Mashhuriazar A, Badihehaghdam M, Gur CH et al (2023) Investigating the effects of repair welding on microstructure, mechanical properties, and corrosion behavior of IN-939 superalloy. J Mater Eng Perform 32:7016–7028. https://doi.org/10.1007/s11665-022-07596-5

    Article  CAS  Google Scholar 

  8. Azimzadegan T, Akbari Mousavi SAA (2019) Investigation of the occurrence of hot cracking in pulsed Nd-YAG laser welding of Hastelloy-X by numerical and microstructure studies. J Manuf Process 44:226–240. https://doi.org/10.1016/j.jmapro.2019.06.005

    Article  Google Scholar 

  9. Dwibedi S, Kumar B, Bhoi SR et al (2020) To investigate the influence of weld time on joint characteristics of Hastelloy X weldments fabricated by RSW process. Mater Today Proc 26:2763–2769. https://doi.org/10.1016/j.matpr.2020.02.576

    Article  CAS  Google Scholar 

  10. Feng JC, Wang YR, Zhang ZD (2006) Nugget growth characteristic for AZ31B magnesium alloy during resistance spot welding. Sci Technol Weld Join 11:154–162

    Article  CAS  Google Scholar 

  11. Goodarzi M, Marashi SPH, Pouranvari M (2009) Dependence of overload performance on Weld attributes for resistance spot welded galvanized low carbon steel. J Mater Process Technol 209:4379–4384. https://doi.org/10.1016/j.jmatprotec.2008.11.017

    Article  CAS  Google Scholar 

  12. Zhang Y, Guo J, Li Y et al (2020) A comparative study between the mechanical and microstructural properties of resistance spot welding joints among ferritic AISI 430 and austenitic AISI 304 stainless steel. J Mater Res Technol 9:574–583

    Article  CAS  Google Scholar 

  13. Zhang X, He X, Xing B et al (2020) Quasi-static and fatigue characteristics of self-piercing riveted joints in dissimilar aluminium-lithium alloy and titanium sheets. J Mater Res Technol 9:5699–5711

    Article  CAS  Google Scholar 

  14. Rezaei Ashtiani HR, Zarandooz R (2016) Microstructural and mechanical properties of resistance spot weld of Inconel 625 supper alloy. Int J Adv Manuf Technol 84:607–619. https://doi.org/10.1007/s00170-015-7732-8

    Article  Google Scholar 

  15. Rezaei Ashtiani HR, Zarandooz R (2015) The influence of welding parameters on the Nugget formation of resistance spot welding of inconel 625 sheets. Metall Mater Trans A Phys Metall Mater Sci 46:4095–4105. https://doi.org/10.1007/s11661-015-3030-1

    Article  CAS  Google Scholar 

  16. Atashparva M, Hamedi M (2018) Investigating mechanical properties of small scale resistance spot welding of a nickel based superalloy through statistical DOE. Exp Tech 42:27–43. https://doi.org/10.1007/s40799-017-0221-2

    Article  Google Scholar 

  17. Bemani M, Pouranvari M (2020) Microstructure and mechanical properties of dissimilar nickel-based superalloys resistance spot welds. Mater Sci Eng A 773:138825. https://doi.org/10.1016/j.msea.2019.138825

    Article  CAS  Google Scholar 

  18. Hoseini HT, Farahani M, Sohrabian M (2017) Process analysis of resistance spot welding on the Inconel alloy 625 using artificial neural networks. Int J Manuf Res 12:444–460

    Article  Google Scholar 

  19. Dwibedi S, Kumar B, Bhoi SR et al (2019) To investigate the influence of weld time on joint characteristics of Hastelloy X weldments fabricated by RSW process. Mater Today Proc 26:2763–2769. https://doi.org/10.1016/j.matpr.2020.02.576

    Article  CAS  Google Scholar 

  20. Li Y, Li J, Ma J, Han P (2022) Influence of Si on strain-induced martensitic transformation in metastable austenitic stainless steel. Mater Today Commun 31:103577

    Article  CAS  Google Scholar 

  21. Anandan B, Manikandan M (2023) Machine learning approach with various regression models for predicting the ultimate tensile strength of the friction stir welded AA 2050-T8 joints by the K-Fold cross-validation method. Mater Today Commun 34:105286

    Article  CAS  Google Scholar 

  22. Alaeibehmand S, Mirsalehi SE, Ranjbarnodeh E (2021) Pinless FSSW of DP600/Zn/AA6061 dissimilar joints. J Mater Res Technol 15:996–1006. https://doi.org/10.1016/j.jmrt.2021.08.071

    Article  CAS  Google Scholar 

  23. Sheshadri R, Nagaraj M, Lakshmikanthan A et al (2021) Experimental investigation of selective laser melting parameters for higher surface quality and microhardness properties: taguchi and super ranking concept approaches. J Mater Res Technol 14:2586–2600. https://doi.org/10.1016/j.jmrt.2021.07.144

    Article  CAS  Google Scholar 

  24. Khoshaim AB, Elsheikh AH, Moustafa EB et al (2021) Experimental investigation on laser cutting of PMMA sheets: effects of process factors on kerf characteristics. J Mater Res Technol 11:235–246. https://doi.org/10.1016/j.jmrt.2021.01.012

    Article  CAS  Google Scholar 

  25. Boopathi S (2022) Experimental investigation and multi-objective optimization of cryogenic friction-stir-welding of AA2014 and AZ31B alloys using MOORA technique. Mater Today Commun 33:104937

    Article  CAS  Google Scholar 

  26. Akbarpour MR, Mashhuriazar A, Daryani M (2021) Experimental and numerical investigation on the effect of the tempcore process parameters on microstructural evolution and mechanical properties of Dual-Phase steel reinforcing rebars. Met Mater Int 27:4074–4083. https://doi.org/10.1007/s12540-020-00840-4

    Article  CAS  Google Scholar 

  27. Mashhuriazar A, Ebrahimzadeh Pilehrood A, Moghanni H et al (2023) Finite element analysis and optimization of equal-channel angular rolling process by using Taguchi Methodology. J Mater Eng Perform 32:176–184. https://doi.org/10.1007/s11665-022-07100-z

    Article  CAS  Google Scholar 

  28. Zhang X, Zhang J, Chen F et al (2017) Characteristics of resistance spot welded Ti6Al4V titanium alloy sheets. Met (Basel) 7:1–12. https://doi.org/10.3390/met7100424

    Article  CAS  Google Scholar 

  29. DiGiovanni C, He L, Pan H et al (2022) Predicting liquid metal embrittlement severity in resistance spot welding using hot tensile testing data. Weld World. https://doi.org/10.1007/s40194-022-01320-6

    Article  Google Scholar 

  30. Hou Z, Kim IS, Wang Y et al (2007) Finite element analysis for the mechanical features of resistance spot welding process. J Mater Process Technol 185:160–165. https://doi.org/10.1016/j.jmatprotec.2006.03.143

    Article  CAS  Google Scholar 

  31. Dong W, Pan H, Lei M et al (2023) Three-dimension characterization of the liquid metal embrittlement crack in the resistance spot welded joint of the advanced high strength steel. Mater Today Commun 105322. https://doi.org/10.1016/j.mtcomm.2023.105322

  32. Siar O, Dancette S, Adrien J et al (2022) 3D characterization of the propagation of liquid metal embrittlement inner cracks during tensile shear testing of resistance spot welds. Mater Charact 184:111664. https://doi.org/10.1016/j.matchar.2021.111664

    Article  CAS  Google Scholar 

  33. Figueredo B, Ramachandran DC, Macwan A, Biro E (2021) Failure behavior and mechanical properties in the resistance spot welding of quenched and partitioned (Q&P) steels. Weld World 65:2359–2369. https://doi.org/10.1007/s40194-021-01179-z

    Article  Google Scholar 

  34. DiGiovanni C, Biro E, Zhou NY (2019) Impact of liquid metal embrittlement cracks on resistance spot Weld static strength. Sci Technol Weld Join 24:218–224

    Article  CAS  Google Scholar 

  35. Pouranvari M, Abedi A, Marashi P, Goodarzi M (2008) Effect of expulsion on peak load and energy absorption of low carbon steel resistance spot welds. Sci Technol Weld Join 13:39–43. https://doi.org/10.1179/174329307X249342

    Article  CAS  Google Scholar 

  36. Marashi P, Pouranvari M, Amirabdollahian S et al (2008) Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels. Mater Sci Eng A 480:175–180. https://doi.org/10.1016/j.msea.2007.07.007

    Article  CAS  Google Scholar 

  37. Pouranvari M, Asgari HR, Mosavizadch SM et al (2007) Effect of Weld nugget size on overload failure mode of resistance spot welds. Sci Technol Weld Join 12:217–225

    Article  Google Scholar 

  38. Attarilar S, Gode C, Mashhuriazar MH, Ebrahimi M (2021) Tailoring twist extrusion process; the better strain behavior at the lower required loads. J Alloys Compd 859:157855. https://doi.org/10.1016/j.jallcom.2020.157855

    Article  CAS  Google Scholar 

  39. Pilehrood AE, Mashhuriazar A, Baghdadi AH et al (2021) Effect of Laser Metal Deposition Parameters on the characteristics of stellite 6 deposited layers on precipitation-hardened Stainless Steel. Mater (Basel) 14. https://doi.org/10.3390/ma14195662

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Mirsalehi.

Ethics declarations

Conflict of Interest/Competing Interests

They have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashhuriazar, A., Mirsalehi, S.E. & Moradi, K. An Investigation of the Effects of Parameters on the Development of Nuggets and the Tensile Properties of IN-625 During Resistance Spot Welding. Exp Tech (2023). https://doi.org/10.1007/s40799-023-00692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40799-023-00692-8

Keywords

Navigation