Skip to main content
Log in

Luminescence rock surface exposure and burial dating: a review of an innovative new method and its applications in archaeology

  • Review
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Luminescence rock surface burial and exposure dating approaches hold enormous potential to contribute to the archaeological sciences. These methods enable the dating of previously undatable archaeological site types and can be used to determine how and when lithic artefacts have been sequentially buried and transported. Studies have already used these approaches to overcome limitations of classical dating methods to constrain the ages of lithic artefact discard and post-depositional movement at surface scatter sites, to chronologically constrain rock art production by dating rockfall and exposure events, as well as dating a variety of rock-based archaeological features such as pavements, petroforms, megalithic structures, and walls. Here, we present a review of these developing methods, including an introduction to the underlying principles and applications, a series of case studies, and a discussion of the obstacles and complexities to be considered when applying these methods. We conclude with a discussion of future applications and developments, including direct dating of rock engravings, buried artefacts, megalithic stone structures, and chert artefacts. With ongoing work and applications, luminescence rock-surface dating has the potential to become widely applicable, shining new light on a diverse range of previously intractable archaeological contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Modified from Pederson et al. (2014)

Fig. 7
Fig. 8

Modified from Sohbati et al. (2015)

Fig. 9
Fig. 10
Fig. 11

Modified from Ageby et al. (2021)

Fig. 12

Modified from Meyer et al. (2018)

Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ageby L, Angelucci DE, Brill D, Carrer F, Rades EF, Rethemeyer J, Brückner H, Klasen N (2021) Rock surface IRSL dating of buried cobbles from an alpine dry-stone structure in Val di Sole. Italy Quaternary Geochronology 66:101212. https://doi.org/10.1016/j.quageo.2021.101212

    Article  Google Scholar 

  • Aitken MJ (1985) Thermoluminescence dating. Academic Press, London

    Google Scholar 

  • Aitken MJ (1998) An introduction to optical dating: the dating of Quaternary sediments by the use of photon-stimulated luminescence. Oxford University Press, Oxford

    Book  Google Scholar 

  • Al Khasawneh S, Murray A, Abudanah F (2019a) A first radiometric chronology for the Khatt Shebib megalithic structure in Jordan using the luminescence dating of rock surfaces. Quaternary Geochronology 49:205–210. https://doi.org/10.1016/j.quageo.2018.02.007

    Article  Google Scholar 

  • Al Khasawneh S, Murray A, Thomsen K, AbuAzizeh W, Tarawneh M (2019b) Dating a near eastern desert hunting trap (kite) using rock surface luminescence dating. Archaeological Anthropolog Sci 11(5):2109–2119. https://doi.org/10.1007/s12520-018-0661-3

    Article  Google Scholar 

  • Alexanderson H (2022) Luminescence characteristics of Scandinavian quartz, their connection to bedrock provenance and influence on dating results. Quat Geochronol 69:101272

    Article  Google Scholar 

  • Ames CJH, Gliganic L, Cordova CE, Boyd K, Jones BG, Maher L, Collins BR (2020) Chronostratigraphy, site formation, and palaeoenvironmental context of late Pleistocene and Holocene occupations at Grassridge Rock Shelter (Eastern Cape, South Africa). Open Quaternary 6(1):5. https://doi.org/10.5334/oq.77

    Article  Google Scholar 

  • Auclair M, Lamothe M, Huot S (2003) Measurement of anomalous fading for feldspar IRSL using SAR. Radiat Meas 37:487–492

    Article  Google Scholar 

  • Avner U, Shem-Tov M, Enmar L, Ragolski G, Shem-Tov R, Barzilai O (2014) A survey of Neolithic cult sites in the Eilat mountains, Israel. Journal of Israel Prehistoric Society 44:101–106

    Google Scholar 

  • Bailiff I, Bridgland D, Cunha PP (2021). Extending the range of optically stimulated luminescence dating using vein-quartz and quartzite sedimentary pebbles. Quaternary Geochronology, 101180

  • Balek CL (2002) Buried artifacts in stable upland sites and the role of bioturbation: a review. Geoarchaeol 17(1):41–51

    Article  Google Scholar 

  • Banerjee D, Murray AS, Botter-Jensen L, Lang A (2001) Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiat Meas 33:73–94

    Article  Google Scholar 

  • Blatt H, Tracy R, Owens B (2006) Petrology: igneous, sedimentary, and metamorphic, 3rd edn. W.H. Freeman & Company, New York

    Google Scholar 

  • Bowler JM, Johnston H, Olley JM, Prescottk JR, Roberts RG, Shawcross W, Spooner NA (2003) New ages for human occupation and climatic change at Lake Mungo, Australia. Nature 421:20–23. https://doi.org/10.1038/nature01391.1

    Article  Google Scholar 

  • Buylaert JP, Murray AS, Thomsen KJ, Jain M (2009) Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiat Meas 44:560–565

    Article  Google Scholar 

  • Chapot MS, Sohbati R, Murray AS, Pederson JL, Rittenour TM (2012) Constraining the age of rock art by dating a rockfall event using sediment and rock-surface luminescence dating techniques. Quat Geochronol 13:18–25. https://doi.org/10.1016/j.quageo.2012.08.005

    Article  Google Scholar 

  • Colarossi D, Duller GAT, Roberts HM, Tooth S, Lyons R (2015) Comparison of paired quartz OSL and feldspar post-IR IRSL dose distributions in poorly bleached fluvial sediments from South Africa. Quat Geochronol 30:233–238

    Article  Google Scholar 

  • Cunningham A, Khashchevskaya D, Semikolennykh D, Kurbanov R, Murray A (2022) Luminescence dating of mass-transport sediment using rock-surface burial methods: a test case from the Baksan valley in the Caucasus Mountains. Quat Geochronol 68:101253

    Article  Google Scholar 

  • Devièse, Thibaut, et al. Compound-specific radiocarbon dating and mitochondrial DNA analysis of the Pleistocene hominin from Salkhit Mongolia. Nature Communications 10.1 (2019): 274.

  • Elkadi J, King GE, Lehmann B, Herman F (2021) Reducing variability in OSL rock surface dating profiles. Quat Geochronol 64:101169

    Article  Google Scholar 

  • Feathers J, More GM, Quinterosc PS, Burkholder JE (2019) IRSL dating of rocks and sediments from desert geoglyphs in coastal Peru. Quat Geochronol 49:177–183. https://doi.org/10.1016/j.quageo.2018.07.009

    Article  Google Scholar 

  • Feathers JK, Frouin M, Bench TG (2022) Luminescence dating of Enigmatic rock structures in New England, USA. Quat Geochronol 73:101402

    Article  Google Scholar 

  • Fleming SJ (1966) Study of thermoluminescence of crystalline extracts from pottery. Archaeometry 9:170–173

    Article  Google Scholar 

  • Freiesleben T, Sohbati R, Murray A, Jain M, al Khasawneh, S., Hvidt, S., & Jakobsen, B. (2015) Mathematical model quantifies multiple daylight exposure and burial events for rock surfaces using luminescence dating. Radiat Meas 81:16–22. https://doi.org/10.1016/j.radmeas.2015.02.004

    Article  Google Scholar 

  • Freiesleben T, Thomsen KJ, Jain M (2022). Novel luminescence kinetic models for rock surface exposure dating. Radiation Measurements, 106877

  • Fuhrmann S, Meyer MC, Gliganic LA, Obleitner F (2022) Testing the effects of aspect and total insolation on luminescence depth profiles for rock surface exposure dating. Radiat Meas 153:106732. https://doi.org/10.1016/j.radmeas.2022.106732

    Article  Google Scholar 

  • Galli A, Martini M, Maspero F, Panzeri L, Sibilia E (2014) Surface dating of bricks, an application of luminescence techniques. The European Physical Journal plus 129:101

    Article  Google Scholar 

  • Galli A, Artesani A, Martini M, Sibilia E, Panzeri L, Maspero F (2017) An empirical model of the sunlight bleaching efficiency of brick surfaces. Radiat Meas 107:67–72

    Article  Google Scholar 

  • Galloway RB (2002) Does limestone show useful optically stimulated luminescence? Ancient TL 20(1):1–5

    Google Scholar 

  • Gliganic LA, Jacobs Z, Roberts RG, Domínguez-rodrigo M, Mabulla AZP (2012) New ages for Middle and Later Stone Age deposits at Mumba rockshelter, Tanzania : Optically stimulated luminescence dating of quartz and feldspar grains. J Hum Evol 62:533–547. https://doi.org/10.1016/j.jhevol.2012.02.004

    Article  Google Scholar 

  • Gliganic LA, Cohen TJ, Slack M, Feathers JK (2016) Sediment mixing in aeolian sandsheets identified and quantified using single-grain optically stimulated luminescence. Quat Geochronol 32:53–66. https://doi.org/10.1016/j.quageo.2015.12.006

    Article  Google Scholar 

  • Gliganic LA, Meyer MC, Sohbati R, Jain M, Barrett S (2019) OSL surface exposure dating of a lithic quarry in Tibet: laboratory validation and application. Quat Geochronol 49:199–204. https://doi.org/10.1016/j.quageo.2018.04.012

    Article  Google Scholar 

  • Gliganic LA, Meyer MC, May J-H, Aldenderfer MS, Tropper P (2021). Direct dating of lithic surface artifacts using luminescence. Science Advances, 7(23)

  • Godfrey-Smith DI, Huntley DJ, Chen W-H (1988) Optical dating studies of quartz and feldspar sediment extracts. Quatern Sci Rev 7:373–380

    Article  Google Scholar 

  • Göksu HY, Fremlin JH, Irwin HT, Fryxell R (1974) Age determination of burned flint by a thermoluminescence method. Science 183:651–654

    Article  Google Scholar 

  • Grün R (2006) Direct dating of human fossils. Yearb Phys Anthropol 49:2–48

    Article  Google Scholar 

  • Habermann J, Schilles T, Kalchgruber R, Wagner GA (2000) Steps towards surface dating using luminescence. Radiat Meas 32(5–6):847–851. https://doi.org/10.1016/S1350-4487(00)00066-4

    Article  Google Scholar 

  • Harris EC (1979) Principles of archaeological stratigraphy. Academic Press, London, New York

    Google Scholar 

  • Hellstrom J, Pickering R (2015) Recent advances and future prospects of the U-Th and U–Pb chronometers applicable to archaeology. J Archaeol Sci 56:32–40

    Article  Google Scholar 

  • Huntley DJ, Baril MR (1997) The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15:11–13

    Google Scholar 

  • Huntley DJ, Hancock RGV (2001) The Rb contents of the K-feldspar grains being measured in optical dating. Ancient TL 19:43–46

    Google Scholar 

  • Huntley DJ, Lamothe M (2001) Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can J Earth Sci 38:1093–1106

    Article  Google Scholar 

  • Huntley DJ, Godfrey-Smith DI, Thewalt MLW (1985) Optical dating of sediments. Nature 313:105–107

    Article  Google Scholar 

  • Hütt G, Jaek I, Tchonka J (1988) Optical dating: K-feldspars optical response stimulation spectra. Quat Sci Rev 7:381–385

    Article  Google Scholar 

  • Jacobs Z, Roberts RG (2007) Advances in optically stimulated luminescence dating of individual grains of quartz from Archeological deposits. Evolutionary Anthroplology 16:210–223

    Article  Google Scholar 

  • Jacobs Z, Roberts RG, Galbraith RF, Deacon HJ, Grün R, Mackay A, Mitchell P, Vogelsang R, Wadley L (2008) Ages for the Middle Stone Age of Southern Africa: implications for human behavior and dispersal. Science 322(5902):733–735. https://doi.org/10.1126/science.1162219

    Article  Google Scholar 

  • Jacobs Z, Meyer MC, Roberts RG, Aldeias V, Dibble H, el Hajraoui MA (2011) Single-grain OSL dating at La Grotte des Contrebandiers (‘Smugglers’ Cave’), Morocco: improved age constraints for the Middle Paleolithic levels. J Archaeol Sci 38(12):3631–3643. https://doi.org/10.1016/j.jas.2011.08.033

    Article  Google Scholar 

  • Jenkins GTH, Duller GAT, Roberts HM, Chiverrell RC, Glasser NF (2018) A new approach for luminescence dating glaciofluvial deposits - high precision optical dating of cobbles. Quatern Sci Rev 192:263–273. https://doi.org/10.1016/j.quascirev.2018.05.036

    Article  Google Scholar 

  • Jeong GY, Choi J-H (2012) Variations in quartz OSL components with lithology, weathering and transportation. Quat Geochronol 10:320–326

    Article  Google Scholar 

  • Lehmann B, Herman F, Valla PG, King GE, Biswas RH (2019) Evaluating post-glacial bedrock erosion and surface exposure duration by coupling in situ optically stimulated luminescence and 10 Be dating. Earth Surf Dyn 7(3):633–662

    Article  Google Scholar 

  • Leigh DS (1998) Evaluating Artifact burial by eolian versus bioturbation processes, South Carolina Sandhills, USA. Geoarchaeology 13(3):309–330

    Article  Google Scholar 

  • Libby WF (1952) (1955), Radiocarbon Dating, 2nd edn. Chicago University Press, Chicago

    Google Scholar 

  • Liritzis I (1994) A new dating method by thermoluminescence of carved megalithic stone building. Comptes Rendus de l ‘Academie des Sciences, Paris, 319, serie II, 319: 603–610

  • Liritzis I, Galloway RB (1999) Dating implications from solar bleaching of thermoluminescence of ancient marble. J Radioanal Nucl Chem 241(2):361–368. https://doi.org/10.1007/BF02347476

    Article  Google Scholar 

  • Liritzis I, Vafiadou A (2015) Surface luminescence dating of some Egyptian monuments: case study. J Cult Herit 16:134–150

    Article  Google Scholar 

  • Liritzis I, Drivaliari N, Polymeris GS, Katagas Ch (2010) New quartz technique for OSL dating of limestones. Mediterr Archaeol Archaeom 10:81–87

    Google Scholar 

  • Liritzis I, Polymeris GS, Vafiadou A, Sideris A, Levy TE (2019) Luminescence dating of stone wall, tomb and ceramics of Kastrouli (Phokis, Greece) Late Helladic settlement: Case study. J Cult Herit 35:76–85

    Article  Google Scholar 

  • Lucas G (2012) Understanding the archaeological record. Cambridge University Press, New York

    Book  Google Scholar 

  • McDonald J, Steelman KL, Veth P, Mackey J, Loewen J, Thurber CR, Guilderson TP (2014) Results from the first intensive dating program for pigment art in the Australian arid zone: insights into recent social complexity. J Archaeol Sci 46:195–204

    Article  Google Scholar 

  • McDonald J, Reynen W, Petchey F, Ditchfield K, Byrne C, Vannieuwenhuyse D, Leopold M, Veth P (2018) Karnatukul (Serpent’s Glen): a new chronology for the oldest site in Australia’s Western Desert. PLoS ONE 13(9):e0202511

    Article  Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, Oxford

    Book  Google Scholar 

  • McDougall I, Brown FH, Fleagle JG (2005) Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433:733–736

    Article  Google Scholar 

  • McKeever S, Chen R (1997) Luminescence models. Radiat Meas 27(5–6):625–661

    Article  Google Scholar 

  • Mejdahl, V. (1987). Internal radioactivity in quartz and feldspar grains. Ancient TL, 10–17

  • Meyer MC, Gliganic LA, Jain M, Sohbati R, Schmidmair D (2018) Lithological controls on light penetration into rock surfaces – implications for OSL and IRSL surface exposure dating. Radiat Meas 120:298–304. https://doi.org/10.1016/j.radmeas.2018.03.004

    Article  Google Scholar 

  • Meyer MC, Gliganic LA, May J-H, Merchel S, Rugel G, Schlütz F, Aldenderfer MS, Krainer K (2020) Landscape dynamics and human-environment interactions in the northern foothills of Cho Oyu and Mount Everest (southern Tibet) during the Late Pleistocene and Holocene. Quatern Sci Rev 229:106127. https://doi.org/10.1016/j.quascirev.2019.106127

    Article  Google Scholar 

  • Moayed NK, Sohbati R, Murray AS, Rades EF, Fattahi M, Ruiz López JF (2023) Rock surface luminescence dating of prehistoric rock art from central Iberia. Archaeometry 65(2):319–334. https://doi.org/10.1111/arcm.12826

    Article  Google Scholar 

  • Morgenstein M, Luo S, Ku TL, Feathers J (2003) Uranium-series and luminescence dating of volcanic lithic artefacts. Archaeometry 45(3):503–518

    Article  Google Scholar 

  • Mulvaney, K., E. Beckett and J. McDonald. (2022). West Lewis Island rock art and stone structures. In: Mulvaney, K. and J. McDonald (ed) Murujuga: Dynamics of the Dreaming. Rock art, stone features and excavations across the Dampier Archipelago. (CRAR+M Monograph No. 2). UWA Publishing, Perth

  • Mulvaney, K. (2015) Murujuga Marni. Rock Art of the Macropod Hunters and Mollusc Harvesters. (CRAR+M Monograph; No. 1). UWA Publishing, Perth

  • Murray AS, Wintle AG (2000) Luminescence dating of quartz using an improved single- aliquot regenerative-dose protocol. Radiat Meas 32:57–73

    Article  Google Scholar 

  • Murray A, Arnold LJ, Buylaert J-P, Guérin G, Qin J, Singhvi AK, Smedley R, Thomsen KJ (2021) Optically stimulated luminescence dating using quartz. Nature Rev Methods Primers 1(1):1–31

    Article  Google Scholar 

  • O’Gorman K, Tanner D, Sontag-González M, Li B, Brink F, Jones BG, Dosseto A, Jatmiko Roberts RG, Jacobs Z (2021) Composite grains from volcanic terranes: internal dose rates of supposed ‘potassium-rich’ feldspar grains used for optical dating at Liang Bua. Indonesia. Quaternary Geochronology 64:101182. https://doi.org/10.1016/j.quageo.2021.101182

    Article  Google Scholar 

  • Ou XJ, Roberts HM, Duller GAT, Gunn MD, Perkins WT (2018) Attenuation of light in different rock types and implications for rock surface luminescence dating. Radiat Meas 120:305–311. https://doi.org/10.1016/j.radmeas.2018.06.027

    Article  Google Scholar 

  • Peacock E, Fant DW (2002) Biomantle formation and artifact translocation in upland sandy soils: an example from the Holly springs national forest, North- Central Mississippi. USA Geoarchaeology 17:91–114

    Article  Google Scholar 

  • Pederson JL, Chapot MS, Simms SR, Sohbati R, Rittenour TM, Murray AS, Cox G (2014) Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques. Proc Natl Acad Sci USA 111(36):1–6. https://doi.org/10.1073/pnas.1405402111

    Article  Google Scholar 

  • Polikreti K, Michael CT, Maniatis Y (2003) Thermoluminescence characteristics of marble and dating of freshly excavated marble objects. Radiat Meas 37(1):87–94. https://doi.org/10.1016/S1350-4487(02)00088-4

    Article  Google Scholar 

  • Prasad AK, Poolton NRJ, Kook M, Jain M (2017) Optical dating in a new light: a direct, non-destructive probe of trapped electrons. Sci Rep 7:12097

    Article  Google Scholar 

  • Prescott JR, Hutton JT (1994) Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiat Meas 23(1):497–500

    Article  Google Scholar 

  • Rades EF, Sohbati R, Lüthgens C, Jain M, Murray AS (2018) First luminescence-depth profiles from boulders from moraine deposits: insights into glaciation chronology and transport dynamics in Malta valley, Austria. Radiat Meas 120:281–289. https://doi.org/10.1016/j.radmeas.2018.08.011

    Article  Google Scholar 

  • Rasheedy MS (1993) On the general-order kinetics of the thermoluminescence glow peak. J Phys: Condens Matter 5(5):633

    Google Scholar 

  • Richter D (2007) Advantages and limitations of thermoluminescence dating of heated flint from Paleolithic sites. Geoarchaeology 22(6):671–683

    Article  Google Scholar 

  • Richter D, Krbetschek M (2006) A new thermoluminescence dating technique for heated flint. Archaeometry 48:695–705. https://doi.org/10.1111/j.1475-4754.2006.00281.x

    Article  Google Scholar 

  • Rink WJ (1997) Electron spin resonance (ESR) dating and ESR applications in Quaternary science and archaeometry. Radiat Meas 27:975–1025

    Article  Google Scholar 

  • Roberts RG, Lian OB (2015) Dating techniques: illuminating the past. Nature 520(7548):438–439

    Article  Google Scholar 

  • Schaafsma P (1990) Shamans’ gallery: a Grand Canyon rock art site. Kiva 55(3):213–234

    Article  Google Scholar 

  • Sellwood EL, Guralnik B, Kook M, Prasad AK, Sohbati R, Hippe K, Wallinga J, Jain M (2019) Optical bleaching front in bedrock revealed by spatially-resolved infrared photoluminescence. Sci Rep 9(1):2611. https://doi.org/10.1038/s41598-019-38815-0

    Article  Google Scholar 

  • Sellwood EL, Kook M, Jain M (2022) A 2D imaging system for mapping luminescence-depth profiles for rock surface dating. Radiat Meas 150:106697. https://doi.org/10.1016/j.radmeas.2021.106697

    Article  Google Scholar 

  • Simms AR, DeWitt R, Kouremenos P, Drewry AM (2011) A new approach to reconstructing sea levels in Antarctica using optically stimulated luminescence of cobble surfaces. Quat Geochronol 6(1):50–60. https://doi.org/10.1016/j.quageo.2010.06.004

    Article  Google Scholar 

  • Slack MJ, Law WB, Gliganic LA (2020) The early occupation of the Eastern Pilbara revisited: new radiometric chronologies and archaeological results from Newman Rockshelter and Newman Orebody XXIX. Quatern Sci Rev 236:106240. https://doi.org/10.1016/j.quascirev.2020.106240

    Article  Google Scholar 

  • Smedley RK, Pearce NJG (2016) Internal U, Th and Rb concentrations of alkali-feldspar grains: implications for luminescence dating. Quat Geochronol 35:16–25. https://doi.org/10.1016/j.quageo.2016.05.002

    Article  Google Scholar 

  • Sohbati R, Murray AS, Jain M, Buylaert J-P, Thomsen KJ (2011) Investigating the resetting of OSL signals in rock surfaces. Geochronometria 38(3):249–258. https://doi.org/10.2478/s13386-011-0029-2

    Article  Google Scholar 

  • Sohbati R, Jain M, Murray A (2012a) Surface exposure dating of non-terrestrial bodies using optically stimulated luminescence: a new method. Icarus 221(1):160–166. https://doi.org/10.1016/j.icarus.2012.07.017

    Article  Google Scholar 

  • Sohbati R, Murray AS, Chapot MS, Jain M, Pederson J (2012b) Optically stimulated luminescence (OSL) as a chronometer for surface exposure dating. J Geophys Res: Solid Earth 117(9):1–7. https://doi.org/10.1029/2012JB009383

    Article  Google Scholar 

  • Sohbati R, Murray AS, Porat N, Jain M, Avner U (2015) Age of a prehistoric “Rodedian” cult site constrained by sediment and rock surface luminescence dating techniques. Quat Geochronol 30:90–99. https://doi.org/10.1016/j.quageo.2015.09.002

    Article  Google Scholar 

  • Sohbati R, Liu J, Jain M, Murray A, Egholm D, Paris R, Guralnik B (2018). Centennial- to millennial-scale hard rock erosion rates deduced from luminescence-depth profiles. Earth and Planetary Science Letters, 493, 218–230. https://www.sciencedirect.com/science/article/pii/S0012821X18302127

  • Steelman KL et al (2021) Implications for rock art dating from the Lower Pecos Canyonlands, TX: A review. Quat Geochronol 63:101167

    Article  Google Scholar 

  • Steelman, K. L. and M. W. Rowe 2012. Radiocarbon dating of rock paintings: incorporating pictographs into the archaeological record. In: J. McDonald and P. M. Veth (ed) A Companion to Rock Art. Wiley-Blackwell Publishing, Oxford

  • Thomsen KJ, Murray AS, Jain M, Bøtter-Jensen L (2008) Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiat Meas 43(9–10):1474–1486. https://doi.org/10.1016/j.radmeas.2008.06.002

    Article  Google Scholar 

  • van Calsteren P, Thomas L (2006) Uranium-series dating applications in Natural Environmental Science. Earth Sci Rev 75(1–4):155–175

    Article  Google Scholar 

  • Veth P, Ward I, Manne T, Ulm S, Ditchfield K et al (2017) Early human occupation of a maritime desert, Barrow Island, North-West Australia. Quatern Sci Rev 168:19–29

    Article  Google Scholar 

  • Vieillevigne E, Guibert P, Zuccarello AR, Bechtel F (2006) The potential of optically stimulated luminescence for medieval building; A case study at Termez, Uzbekistan. Radiat Meas 41:991–994

    Article  Google Scholar 

  • Wilkins J, Schoville BJ, Pickering R, Gliganic L, Collins B, Brown KS, von der Meden J, Khumalo W, Meyer MC, Maape S, Blackwood AF, Hatton A (2021) Innovative Homo sapiens behaviours 105,000 years ago in a wetter Kalahari. Nature 592(7853):248–252. https://doi.org/10.1038/s41586-021-03419-0

    Article  Google Scholar 

  • Wintle AG (1973) Anomalous fading of thermoluminescence in mineral samples. Nature 245:143–144

    Article  Google Scholar 

  • Wintle AG (1997) Luminescence dating: laboratory procedures and protocols. Radiat Meas 27:769–817

    Article  Google Scholar 

  • Wintle AG, Murray AS (2006) A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat Meas 41(4):369–391. https://doi.org/10.1016/j.radmeas.2005.11.001

    Article  Google Scholar 

  • Zimmerman DW (1967) Thermoluminescence from fine grains from ancient pottery. Archaeometry 10:26–28

    Article  Google Scholar 

Download references

Funding

This work was funded by an Australian Research Council grant to J.M. (LP190100724).

Author information

Authors and Affiliations

Authors

Contributions

L.A.G., J.M., and M.C.M. wrote the main manuscript text and L.A.G. prepared all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to L. A. Gliganic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gliganic, L.A., McDonald, J. & Meyer, M.C. Luminescence rock surface exposure and burial dating: a review of an innovative new method and its applications in archaeology. Archaeol Anthropol Sci 16, 17 (2024). https://doi.org/10.1007/s12520-023-01915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-023-01915-0

Keywords

Navigation