Skip to main content
Log in

Biological Activities of Boron and Reduced Graphene Oxide-Based Zinc Oxide Nanocomposites (ZnO:B and RGO/ZnO:B) Synthesized by an Environmentally Friendly Method

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, a graphene oxide material was fabricated using the Hummers process. RGO, ZnO, ZnO:B and RGO/ZnO:B nanoparticles were synthesized by the hydrothermal method in an autoclave at a temperature of 160 °C. The structural and morphological changes in the synthesized ZnO nanomaterials were investigated by preparing composite materials with a boron additive and RGO. The prepared nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Antimicrobial and antibiofilm assays were performed to evaluate the biological activities of the synthesized nanoparticles. The antimicrobial activity of these NPs was investigated against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis and Staphylococcus epidermidis pathogenic bacteria. Among the nanoparticles tested, ZnO and ZnO:B NPs showed strong antimicrobial activity against clinically important E. coli, P. aeruginosa and B. cereus strains. The antibiofilm activity of the synthesized nanoparticles was determined using E. coli and P. aeruginosa strains. The biofilm inhibition of both strains by the ZnO:B nanocomposites was greater than that by the other nanocomposites. At a concentration of 20 mg/mL, the ZnO:B nanocomposite showed 42.13% biofilm inhibition of E. coli and 36.21% biofilm inhibition of P. aeruginosa. The RGO/ZnO:B nanocomposite had a specific inhibitory effect on E. coli (34.25%) and P. aeruginosa (30.16%). The antibiofilm effect of the nanocompounds used in the study was greater on E. coli than on P. aeruginosa. As a result, the synthesized boron-reinforced ZnO nanocomposites exhibited strong biological effects. These results will provide valuable information for the development of new treatment regimens for the inactivation of pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.K.Y. Soliman, S.S. Salem, M. Abu-Elghait, M.S. Azab, Biosynthesis of Silver and Gold Nanoparticles and Their Efficacy Towards Antibacterial, Antibiofilm, Cytotoxicity, and Antioxidant Activities. Appl. Biochem. Biotechnol. 195(2), 1158–1183 (2023). https://doi.org/10.1007/s12010-022-04199-7

    Article  CAS  PubMed  Google Scholar 

  2. N. Jubair, M. Rajagopal, S. Chinnappan, N.B. Abdullah, A. Fatima, Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). Evidence-based Complement. Altern. Med2021 (2021).  https://doi.org/10.1155/2021/3663315

  3. P. Singh, S. Pandit, C. Jers, A.S. Joshi, J. Garnæs, I. Mijakovic, Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Sci. Rep. 11(1), 1–13 (2021). https://doi.org/10.1038/s41598-021-92006-4

    Article  CAS  ADS  Google Scholar 

  4. M.G. Kang, F. Khan, D.M. Jo, D.K. Oh, N. Tabassum, Y.M. Kim, Antibiofilm and Antivirulence Activities of Gold and Zinc Oxide Nanoparticles Synthesized from Kimchi-Isolated Leuconostoc sp. Strain C2. Antibiotics. 11(11) (2022).  https://doi.org/10.3390/antibiotics11111524

  5. E. Sánchez-López et al., Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials 10(2), 1–39 (2020). https://doi.org/10.3390/nano10020292

    Article  CAS  Google Scholar 

  6. G.T. Anand, R. Nithiyavathi, R. Ramesh, S. John Sundaram, K. Kaviyarasu, Structural and optical properties of nickel oxide nanoparticles: Investigation of antimicrobial applications. Surf Interfaces. 18(2019), 100460 (2020). https://doi.org/10.1016/j.surfin.2020.100460

  7. P.P. Mahamuni et al., Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophys. Rep. 17(2018), 71–80 (2019). https://doi.org/10.1016/j.bbrep.2018.11.007

  8. S.A. Khan, S. Shahid, A. Ayaz, J. Alkahtani, M.S. Elshikh, T. Riaz, Phytomolecules-coated NiO nanoparticles synthesis using abutilon indicum leaf extract: Antioxidant, antibacterial, and anticancer activities. Int. J. Nanomedicine 16, 1757–1773 (2021). https://doi.org/10.2147/IJN.S294012

    Article  PubMed  PubMed Central  Google Scholar 

  9. V. Tsikourkitoudi, B. Henriques-Normark, G.A. Sotiriou, Inorganic nanoparticle engineering against bacterial infections. Curr. Opin. Chem. Eng. 38, 100872 (2022). https://doi.org/10.1016/j.coche.2022.100872

    Article  Google Scholar 

  10. Q. Liang, F. Qiao, X. Cui, X. Hou, Controlling the morphology of ZnO structures via low temperature hydrothermal method and their optoelectronic application. Mater. Sci. Semicond. Process. 89(2018), 154–160 (2019). https://doi.org/10.1016/j.mssp.2018.09.007

  11. S. Mohan, M. Vellakkat, A. Aravind, U. Reka, Hydrothermal synthesis and characterization of Zinc Oxide nanoparticles of various shapes under different reaction conditions. Nano Express 1(3), 30028 (2020). https://doi.org/10.1088/2632-959X/abc813

    Article  Google Scholar 

  12. S. Elbasuney, G.S. El-Sayyad, H. Tantawy, A.H. Hashem, Promising antimicrobial and antibiofilm activities of reduced graphene oxide-metal oxide (RGO-NiO, RGO-AgO, and RGO-ZnO) nanocomposites. RSC Adv. 11(42), 25961–25975 (2021). https://doi.org/10.1039/d1ra04542c

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. M.I. Khan et al., Investigation of in vitro antibacterial and seed germination properties of green synthesized pure and nickel doped ZnO nanoparticles. Phys. B Condens. Matter 601(2020), 412563 (2021). https://doi.org/10.1016/j.physb.2020.412563

  14. A.M. Shehabeldine et al., Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: Time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacterial Cells. Appl. Biochem. Biotechnol. 195(1), 467–485 (2023). https://doi.org/10.1007/s12010-022-04120-2

    Article  CAS  PubMed  Google Scholar 

  15. Y. Wang, X. Wang, L. Li, Y. Wu, Q. Yu, An experimental and theoretical study on the photocatalytic antibacterial activity of boron-doped TiO2 nanoparticles. Ceram. Int. 48(1), 604–614 (2022). https://doi.org/10.1016/j.ceramint.2021.09.139

    Article  CAS  Google Scholar 

  16. T. Abdulrehman et al., Boron doped silver-copper alloy nanoparticle targeting intracellular S. Aureus in bone cells. PLoS ONE 15(4), 1–18 (2020). https://doi.org/10.1371/journal.pone.0231276

    Article  CAS  Google Scholar 

  17. S. Archana et al., Synthesis of nickel oxide grafted graphene oxide nanocomposites - A systematic research on chemisorption of heavy metal ions and its antibacterial activity. Environ. Nanotechnology, Monit. Manag. 16(May), 100486 (2021). https://doi.org/10.1016/j.enmm.2021.100486

  18. J. Xu et al., Antibiofilm Effect of Cinnamaldehyde-Chitosan Nanoparticles against the Biofilm of Staphylococcus aureus. Antibiotics 11(10), 1–13 (2022). https://doi.org/10.3390/antibiotics11101403

    Article  CAS  Google Scholar 

  19. A.H. Hashem, S.H. Rizk, M.A. Abdel-Maksoud, W.H. Al-Qahtani, H. AbdElgawad, G.S. El-Sayyad, Unveiling anticancer, antimicrobial, and antioxidant activities of novel synthesized bimetallic boron oxide-zinc oxide nanoparticles. RSC Adv. 13(30), 20856–20867 (2023). https://doi.org/10.1039/d3ra03413e

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. R. Kucukosman et al., Boron-based magnesium diboride nanosheets preparation and tested for antimicrobial properties for PES membrane. Chemosphere 339 (2023). https://doi.org/10.1016/j.chemosphere.2023.139340

  21. M. Umar et al., Designing of Te-doped ZnO and S-g-C3N4/Te-ZnO nanocomposites as excellent photocatalytic and antimicrobial agents. Polyhedron 245(May), 116664 (2023). https://doi.org/10.1016/j.poly.2023.116664

  22. J.G. Cuadra et al., ZnO/Ag Nanocomposites with Enhanced Antimicrobial Activity. Appl. Sci. 12(10), 1–13 (2022). https://doi.org/10.3390/app12105023

    Article  CAS  Google Scholar 

  23. R. Ahmadi, R. Fattahi Nafchi, P. Sangpour, M. Bagheri, E. Badiei, A comparative study: Green synthesis and evaluation of ZnO-GO and ZnO-RGO nanocomposites for antibacterial applications. Mater. Sci. Eng. B 294(2022), 116555 (2023). https://doi.org/10.1016/j.mseb.2023.116555

  24. A. Al Baroot, M. Alheshibri, Q.A. Drmosh, S. Akhtar, E. Kotb, K.A. Elsayed, A novel approach for fabrication ZnO/CuO nanocomposite via laser ablation in liquid and its antibacterial activity: A novel approach for fabrication ZnO/CuO nanocomposite, Arab. J. Chem. 15(2), . 103606 (2022). https://doi.org/10.1016/j.arabjc.2021.103606

  25. A.A. Menazea, N.S. Awwad, Antibacterial activity of TiO2 doped ZnO composite synthesized via laser ablation route for antimicrobial application. J. Mater. Res. Technol. 9(4), 9434–9441 (2020). https://doi.org/10.1016/j.jmrt.2020.05.103

    Article  CAS  Google Scholar 

  26. E. Kiray, Antibiofilm and Anti-Quorum Sensing Activities of Vaginal Origin Probiotics. Eur. J. Biol. 80(2), 82–90 (2021). https://doi.org/10.26650/EurJBiol.2021.932640

    Article  CAS  ADS  Google Scholar 

  27. B. Kowalska-Krochmal, R. Dudek-Wicher, The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 10(2), 1–21 (2021). https://doi.org/10.3390/pathogens10020165

    Article  CAS  Google Scholar 

  28. N.A. Theodora, V. Dominika, D.E. Waturangi, Screening and quantification of anti-quorum sensing and antibiofilm activities of phyllosphere bacteria against biofilm forming bacteria. BMC. Res. Notes 12(1), 10–14 (2019). https://doi.org/10.1186/s13104-019-4775-1

    Article  CAS  Google Scholar 

  29. V. Gupta, N. Sharma, U. Singh, M. Arif, A. Singh, Higher oxidation level in graphene oxide. Optik (Stuttg) 143, 115–124 (2017). https://doi.org/10.1016/j.ijleo.2017.05.100

    Article  CAS  ADS  Google Scholar 

  30. J. Guerrero-Contreras, F. Caballero-Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 153, 209–220 (2015). https://doi.org/10.1016/j.matchemphys.2015.01.005

    Article  CAS  Google Scholar 

  31. R.M. Nauman Javed, A. Al-Othman, M. Tawalbeh, A.G. Olabi, Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications. Renew. Sustain. Energy Rev. 168(January), 112836 (2022). https://doi.org/10.1016/j.rser.2022.112836

  32. V. Sharma, Y. Jain, M. Kumari, R. Gupta, S.K. Sharma, K. Sachdev, Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application. Macromol. Symp. 376(1), 1–5 (2017). https://doi.org/10.1002/masy.201700006

    Article  CAS  Google Scholar 

  33. R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M.A. Atieh, XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 45(11), 14439–14448 (2019). https://doi.org/10.1016/j.ceramint.2019.04.165

    Article  CAS  Google Scholar 

  34. M. Muniyalakshmi, K. Sethuraman, D. Silambarasan, Synthesis and characterization of graphene oxide nanosheets. Mater. Today, Proc. 21, 408–410 (2020). https://doi.org/10.1016/j.matpr.2019.06.375

    Article  CAS  Google Scholar 

  35. T. Hurma, Effect of boron doping concentration on structural optical electrical properties of nanostructured ZnO films. J. Mol. Struct. 1189, 1–7 (2019). https://doi.org/10.1016/j.molstruc.2019.03.096

    Article  CAS  ADS  Google Scholar 

  36. M.J. Chithra, M. Sathya, K. Pushpanathan, Effect of pH on crystal size and photoluminescence property of zno nanoparticles prepared by chemical precipitation method. Acta Metall. Sin. English Lett. 28(3), 394–404 (2015). https://doi.org/10.1007/s40195-015-0218-8

  37. N. Kumaresan, K. Ramamurthi, R. Ramesh Babu, K. Sethuraman, S. Moorthy Babu, Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Appl. Surf. Sci. 418, 138–146 (2017). https://doi.org/10.1016/j.apsusc.2016.12.231

  38. S.B. Ghaffari, M.H. Sarrafzadeh, M. Salami, M.R. Khorramizadeh, A pH-sensitive delivery system based on N-succinyl chitosan-ZnO nanoparticles for improving antibacterial and anticancer activities of curcumin. Int. J. Biol. Macromol. 151, 428–440 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.141

    Article  CAS  PubMed  Google Scholar 

  39. R. Niranjan, S. Zafar, B. Lochab, R. Priyadarshini, Synthesis and Characterization of Sulfur and Sulfur-Selenium Nanoparticles Loaded on Reduced Graphene Oxide and Their Antibacterial Activity against Gram-Positive Pathogens. Nanomaterials 12(2) (2022). https://doi.org/10.3390/nano12020191

  40. O. Usman et al., Enhanced Bactericidal Action of rGO-ZnO Hybrids Prepared by the One-Pot Coprecipitation Approach. ACS Omega 7(30), 26715–26722 (2022). https://doi.org/10.1021/acsomega.2c03049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D. Kichukova, I. Spassova, A. Kostadinova, A. Staneva, D. Kovacheva, Facile Synthesized Cu–RGO and Ag–RGO Nanocomposites with Potential Biomedical Applications. Nanomaterials 12(12) (2022). https://doi.org/10.3390/nano12122096

  42. V. Ahmad, M.O. Ansari, Synthesis, Characterization, and Evaluation of Antimicrobial Efficacy of Reduced Graphene–ZnO–Copper Nanocomplex. Antibiotics 12(2) (2023). https://doi.org/10.3390/antibiotics12020246

  43. M.J. Klink, N. Laloo, A.L. Taka, V.E. Pakade, E. Monapathi, J.S. Modise, Synthesis , Characterization and Antimicrobial Activity of Zinc Yeast Pathogens. (2022)

  44. D.V. Francis, M.N. Jayakumar, H. Ahmad, T. Gokhale, Antimicrobial Activity of Biogenic Metal Oxide Nanoparticles and Their Synergistic Effect on Clinical Pathogens. Int. J. Mol. Sci. 24(12) (2023). https://doi.org/10.3390/ijms24129998

  45. W.M. Abdelraheem, E.S. Mohamed, The effect of Zinc Oxide nanoparticles on Pseudomonas aeruginosa biofilm formation and virulence genes expression. J. Infect. Dev. Ctries. 15(6), 826–832 (2021). https://doi.org/10.3855/jidc.13958

    Article  CAS  PubMed  Google Scholar 

  46. W.M. Abdelraheem, R.M.M. Khairy, A.I. Zaki, S.H. Zaki, Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates. Ann. Clin. Microbiol. Antimicrob. 20(1), 1–11 (2021). https://doi.org/10.1186/s12941-021-00459-2

    Article  CAS  Google Scholar 

  47. Y. Zheng, X.K. Li, Y. Wang, L. Cai, The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: Therapeutic effects by chelators. Hemoglobin 32(1–2), 135–145 (2008)

    Article  CAS  PubMed  Google Scholar 

  48. H. Yang et al., Synthesis of boron carbonitride nanosheets using for delivering paclitaxel and their antitumor activity. Colloids Surf. B Biointerfaces 198(2020), 111479 (2021). https://doi.org/10.1016/j.colsurfb.2020.111479

  49. F. Yang, M. Zhu, J. Zhang, H. Zhou, Synthesis of biologically active boron-containing compounds. Medchemcomm 9(2), 201–211 (2018). https://doi.org/10.1039/c7md00552k

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Y. Zhu, P. Prommana, N.S. Hosmane, P. Coghi, C. Uthaipibull, Y. Zhang, Functionalized Boron Nanoparticles as Potential Promising Antimalarial Agents. ACS Omega 7(7), 5864–5869 (2022). https://doi.org/10.1021/acsomega.1c05888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. H. Türkez et al., Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes. Pharmaceutics 15(1) (2023). https://doi.org/10.3390/pharmaceutics15010149

  52. A.I. El-Batal, G.S. El-Sayyad, N.E. Al-Hazmi, M. Gobara, Antibiofilm and Antimicrobial Activities of Silver Boron Nanoparticles Synthesized by PVP Polymer and Gamma Rays Against Urinary Tract Pathogens. J. Clust. Sci. 30(4), 947–964 (2019). https://doi.org/10.1007/s10876-019-01553-4

    Article  CAS  Google Scholar 

  53. N.F. Andrade Neto, P. Zanatta, L.E. Nascimento, R.M. Nascimento, M.R.D. Bomio, F.V. Motta, Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO 2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method. J. Electron. Mater. 48(5), 3145–3156 (2019). https://doi.org/10.1007/s11664-019-07076-y

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saniye Tekerek.

Ethics declarations

Researcher Contribution Rate Statement Summary

The authors declare that they have contributed equally to the article.

Conflict of Interest Statement

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekerek, S., Tanrıverdi, A., Kiray, E. et al. Biological Activities of Boron and Reduced Graphene Oxide-Based Zinc Oxide Nanocomposites (ZnO:B and RGO/ZnO:B) Synthesized by an Environmentally Friendly Method. Braz J Phys 54, 35 (2024). https://doi.org/10.1007/s13538-023-01415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01415-5

Keywords

Navigation