Skip to main content
Log in

Quasi-static piezoelectric strain and recoverable energy at a low biased field in Sr2+ substituted electrostrictive BZT ceramic

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Sr2+ modified perovskite-type polycrystalline BaTi0.9Zr0.1O3 ferroelectric ceramic exhibits high potential to engage in piezoelectric or high energy density storage applications. In this study, the structural, microstructural, electrical, ferroelectric and piezoelectric behaviours have been investigated in detail. The developed material crystallizes in tetragonal phase with a decrease in lattice parameter by substituting Sr2+ ion in the A site. Each composition shows a diffused phase transition, which is a characteristic of the relaxor phase. A significant decrease in phase transition temperature from 99.8°C for x = 0.00 to 50.9°C for x = 0.20 is observed. The large energy density storage capacity for composition x = 0.10 with Wrec ~ 62.18 mJ cm–3 has been observed at a low field, but maximum efficiency η = ~81.46% is observed for x = 0.20. The Sr2+ doped composition with x = 0.10 shows good piezoelectric strain = 0.029% with a small hysteresis loss in SE curve, which makes it suitable for piezoelectric application. The significantly high electrostrictive coefficient Q11 = 0.078 m4 C–2 is observed for composition x = 0.15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Shrout T R and Zhang S J 2007 J. Electroceram. 19 1114

    Article  Google Scholar 

  2. Wang T, Xing J, Xu Z, Li J, Wang K, Wu J et al 2020 J. Mater. Sci. Mater. Electron. 31 9525

    Article  CAS  Google Scholar 

  3. Tian F, Liu Y, Ma R, Li F, Xu Z and Yang Y 2021 Appl. Acoust. 175 107827

    Article  Google Scholar 

  4. Wang J, Chen M, Zhao X, Wang F, Tang Y, Lin D et al 2021 Sens. Actuators A Phys. 318 112528

    Article  CAS  Google Scholar 

  5. Rödel J, Jo W, Seifert K T P, Anton E M, Granzow T and Damjanovic D 2009 J. Am. Ceram. Soc. 92 1153

    Article  Google Scholar 

  6. Zhang M, Yang H, Yu Y and Lin Y 2021 Chem. Eng. J. 425 131465

    Article  CAS  Google Scholar 

  7. Chen P, Wu S, Li P, Zhai J and Shen B 2018 J. Eur. Ceram. Soc. 38 4640

    Article  CAS  Google Scholar 

  8. Li Y, Jiao Y, Zhang S, Li Z, Song C, Dong J et al 2021 J. Alloys Compd. 856 156708

    Article  CAS  Google Scholar 

  9. Li W B, Zhou D, Xu R, Wang D W, Su J Z, Pang L X et al 2019 ACS Appl. Energy Mater. 2 5499

    Article  CAS  Google Scholar 

  10. Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J et al 2017 Appl. Phys. Rev. 4 041305–13

    Article  Google Scholar 

  11. Yang Z, Fu J, Xu Y and Zuo R 2021 J. Eur. Ceram. Soc. 41 6441

    Article  CAS  Google Scholar 

  12. Zhou M, Liang R, Zhou Z and Dong X 2018 J. Mater. Chem. C 6 8528

    Article  CAS  Google Scholar 

  13. Zeng F, Cao M, Zhang L, Liu M, Hao H, Yao Z et al 2017 Ceram. Int. 43 7710

    Article  CAS  Google Scholar 

  14. Chen X, Peng B, Ding M J, Zhang X, Xie B, Mo T et al 2020 Nano Energy 78 105390

    Article  CAS  Google Scholar 

  15. Wang K, Zhang Y, Wang S, Zhao Y Y, Cheng H, Li Q et al 2021 ACS Appl. Mater. Interfaces 13 22717

    Article  CAS  Google Scholar 

  16. Bhaskar Reddy S, Prasad Rao K and Ramachandra Rao M S 2009 J. Alloys Compd. 481 692

    Article  Google Scholar 

  17. Iqbal M J, Ullah A, Rehman I U, Ullah A, Iqbal Y and Kim I W 2019 J. Mater. Sci. Mater. Electron. 30 10686

    Article  CAS  Google Scholar 

  18. Arshad M, Du H, Javed M S, Maqsood A, Ashraf I, Hussain S et al 2020 Ceram. Int. 46 2238

    Article  CAS  Google Scholar 

  19. Sareecha N, Shah W A, Maqsood A, Anis-ur-Rehman M and Latif Mirza M 2017 Mater. Chem. Phys. 193 42

    Article  CAS  Google Scholar 

  20. Phoon B L, Lai C W, Juan J C, Show P L and Chen W H 2019 Int. J. Energy Res. 43 5151

    Article  CAS  Google Scholar 

  21. Kumar P and Kumar V 2018 J Alloys Compd. 731 760

    Article  Google Scholar 

  22. Maraj M, Wei W, Peng B and Sun W 2019 Materials (Basel) 12 3641

    Article  CAS  Google Scholar 

  23. Kolar D, Trontelj M and Stadler Z 1982 J. Am. Ceram. Soc. 65 470

    Article  CAS  Google Scholar 

  24. Pokorńy J, Pasha U M, Ben L, Thakur O P, Sinclair D C and Reaney I M 2011 J. Appl. Phys. 109 11

    Article  Google Scholar 

  25. Kushvaha D K, Rout S K and Tiwari B 2019 J. Alloys Compd. 782 270

    Article  CAS  Google Scholar 

  26. Jain A, Saroha R, Pastor M, Jha A K and Panwar A K 2016 Curr. Appl. Phys. 16 859

    Article  Google Scholar 

  27. Diao C L, Wang C H, Luo N N, Qi Z M, Shao T, Wang Y Y et al 2014 J. Appl. Phys. 115 1141031

    Article  Google Scholar 

  28. Manotham S, Jaita P, Randorn C, Rujijanagul G and Cann D P 2019 J. Alloys Compd. 808 151655

    Article  CAS  Google Scholar 

  29. Zhang L, Zhong W L, Wang C L, Peng Y P and Wang Y G 1999 Eur. Phys. J. B 11 565

    Article  CAS  Google Scholar 

  30. Sangwan K M, Ahlawat N, Kundu R S, Rani S, Rani S, Ahlawat N et al 2018 J. Phys. Chem. Solids 117 158

    Article  CAS  Google Scholar 

  31. Dixit A, Majumder S B, Katiyar R S and Bhalla A S 2003 Appl. Phys. Lett. 82 2679

    Article  CAS  Google Scholar 

  32. Wang T, Chen X, Qiu Y, Lian H and Chen W 2017 Mater. Chem. Phys. 186 407

    Article  CAS  Google Scholar 

  33. Wang Y, Wang T, Wang J, Liu J, Xing Z, Yang H et al 2021 J. Eur. Ceram. Soc. 41 6474

    Article  CAS  Google Scholar 

  34. Liu G, Li Y, Shi M, Yu L, Chen P, Yu K et al 2019 Ceram. Int. 45 19189

    Article  CAS  Google Scholar 

  35. Lu X, Hou L, Jin L, Wang D, Hu Q, Alikin D O et al 2018 J. Eur. Ceram. Soc. 753 558

    CAS  Google Scholar 

  36. Khan S A, Akram F, Kim J C, Song T K, Kim M H, Lee S et al 2019 J. Korean Phys. Soc. 75 811

    Article  CAS  Google Scholar 

  37. Genenko Y A, Glaum J, Hoffmann M J and Albe K 2015 Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 192 52

    Article  CAS  Google Scholar 

  38. Nguyen M D, Houwman E P and Rijnders G 2017 Sci. Rep. 7 12915

    Article  Google Scholar 

  39. Ghosh S K, Saha S, Sinha T P and Rout S K 2016 J. Appl. Phys. 120 1–9

    Google Scholar 

  40. Zhu Y 2019 Appl. Phys. A Mater. Sci. Process. 125 1

    Article  Google Scholar 

  41. Qi H and Zuo R 2020 J. Mater. Chem. A 8 2369

    Article  CAS  Google Scholar 

  42. Song M, Sun X, Li Q, Qian H, Liu Y and Lyu Y 2021 Crystals 11 1

    Google Scholar 

  43. Jaita P and Jarupoom P 2021 J. Asian Ceram. Soc. 00 1

    Google Scholar 

  44. Duraisamy D and Venkatesan G N 2018 Appl. Phys. Lett. 112 0529031

    Article  Google Scholar 

  45. Shaobo Q, Zupei Y, Feng G and Changsheng T 2000 Ceram. Int. 26 651

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, D K Kushvaha acknowledges the Council of Scientific and Industrial Research (CSIR) for partial financial support through file number 09/554(0051)/2020-EMR-I, dated 12th October 2020, to conduct the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Rout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, A., Kushvaha, D.K., Rout, S.K. et al. Quasi-static piezoelectric strain and recoverable energy at a low biased field in Sr2+ substituted electrostrictive BZT ceramic. Bull Mater Sci 47, 11 (2024). https://doi.org/10.1007/s12034-023-03083-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03083-2

Keywords

Navigation