Skip to main content
Log in

The energy-free purification of trace thallium(I)-contaminated potable water using a high-selective filter paper with multi-layered Prussian blue decoration

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Thallium is a highly toxic metal, and trace amount of thallium(I) (Tl+) in potable water could cause a severe water crisis, which arouses the exploitation of highly-effective technology for purification of Tl+ contaminated water. This report proposes the multi-layered Prussian blue (PB)-decorated composite membranes (PBx@PDA/PEI-FP) based on the aminated filter papers for Tl+ uptake. Extensively characterization by Fourier transform infrared spectrometer-attenuated total reflectance, scanning electron microscope, thermogravimetric analysis, X-ray photoelectron spectroscopy and X-ray diffraction were performed to confirm the in situ growth of cubic PB crystals on filter paper membrane surfaces via the aminated layers, and the successful fabrication of multi-layered PB overcoats via the increasing of aminated layers. The effect of PB layers on Tl+ removal by PBx@PDA/PEI-FP from simulated drinking water was evaluated as well as the influence of different experimental conditions. A trade-off between PB decoration layer number and PB distribution sizes is existed in Tl+ uptake by PBx@PDA/PEI-FP. The double-layered PB2@PDA/PEI-FP membrane showed the maximum sorption capacity, but its Tl+ uptake performance was weakened by the acid, coexisting ions (K+ and Na+) and powerful operation pressure, during filtrating a large volume of low-concentrated Tl+-containing water. However, the negative effect of coexisting ions on the Tl+ uptake could be effectively eliminated in weak alkaline water, and the Tl+ removal was increased up to 100% without any pressure driving for PB2@PDA/PEI-FP membrane. Most importantly, PB2@PDA/PEI-FP displayed the high-efficiency and high-selectivity in purifying the Tl+-spiked Pearl River water, in which the residual Tl+ in filtrate was less than 2 µg·L−1 to meet the drinking water standard of United States Environmental Protection Agency. This work provides a feasible avenue to safeguard the drinking water in remote and underdeveloped area via the energy-free operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. López Y, Reguera E. Magnetic Prussian blue derivative like absorbent cages for an efficient thallium removal. Journal of Cleaner Production, 2021, 283: 124587

    Article  Google Scholar 

  2. Cheam V. Thallium contamination of water in Canada. Water Quality Research Journal of Canada, 2001, 36(4): 851–877

    Article  CAS  Google Scholar 

  3. Zitko V. Toxicity and pollution potential of thallium. Science of the Total Environment, 1975, 4(2): 185–192

    Article  PubMed  CAS  Google Scholar 

  4. Li H, Chen J, Long J, Li X, Jiang D, Zhang P, Qi J, Huang X, Liu J, Xu R, et al. Removal of thallium from aqueous solutions using Fe-Mn binary oxides. Journal of Hazardous Materials, 2017, 338: 296–305

    Article  PubMed  CAS  Google Scholar 

  5. Liu J, Wang J, Tsang D, Xiao T, Chen Y, Hou L. Emerging thallium pollution in China and source tracing by thallium isotopes. Environmental Science & Technology, 2018, 52(21): 11977–11979

    Article  CAS  Google Scholar 

  6. Li H, Chen J, Long J, Jiang D, Liu J, Li S, Qi J, Zhang P, Wang J, Gong J, et al. Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins. Journal of Hazardous Materials, 2017, 333: 179–185

    Article  PubMed  CAS  Google Scholar 

  7. Sinyakova M, Semenova E A, Gamuletskaya O A. Ion exchange of copper(II), lanthanum(III), thallium(I), and mercury(II) on the “polysurmin” substance. Russian Journal of General Chemistry, 2014, 84(13): 2516–2520

    Article  CAS  Google Scholar 

  8. Li Z, Liu C, Ma R, Yu Y, Chang Z, Zhang X, Yang C, Chen D, Yu Y, Li W, et al. Rapid removal of thallium from water by a new magnetic nano-composite using graphene oxide for efficient separation. International Biodeterioration & Biodegradation, 2021, 161: 105245

    Article  CAS  Google Scholar 

  9. Zhao Z, Xiong Y, Cheng X, Hou X, Yang Y, Tian Y, You J, Xu L. Adsorptive removal of trace thallium(I) from wastewater: a review and new perspectives. Journal of Hazardous Materials, 2020, 393: 122378

    Article  PubMed  CAS  Google Scholar 

  10. Escudero L, Wuilloud R G, Olsina R A. Sensitive determination of thallium species in drinking and natural water by ionic liquid-assisted ion-pairing liquid-liquid microextraction and inductively coupled plasma mass spectrometry. Journal of Hazardous Materials, 2013, 244–245: 380–386

    Article  PubMed  Google Scholar 

  11. Yang Y, Xiao J, Shen Y, Liu X, Li W, Wang W, Yang Y. The efficient removal of thallium from sintering flue gas desulfurization wastewater in ferrous metallurgy using emulsion liquid membrane. Environmental Science and Pollution Research International, 2017, 24(31): 24214–24222

    Article  PubMed  CAS  Google Scholar 

  12. Ussipbekova Y, Seilkhanova G, Jeyabharathi C, Scholz F, Kurbatov A, Nauryzbaev M, Berezovskiy A. Electrochemical deposition and dissolution of thallium from sulfate solutions. International Journal of Analytical Chemistry, 2015, 7: 357–514

    Google Scholar 

  13. Pei X, Gan L, Tong Z, Gao H, Meng S, Zhang W, Wang P, Chen Y. Robust cellulose-based composite adsorption membrane for heavy metal removal. Journal of Hazardous Materials, 2021, 406: 124746

    Article  PubMed  CAS  Google Scholar 

  14. Abdullah N, Yusof N, Lau W J, Jaafar J, Ismail A F. Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 2019, 76: 17–38

    Article  CAS  Google Scholar 

  15. Tian J, Chang H, Zhang R. How to fabricate a negatively charged NF membrane for heavy metal removal via the interfacial polymerization between PIP and TMC? Desalination, 2020, 491: 114499

    Article  CAS  Google Scholar 

  16. Efome J, Rana D, Matsuura T, Lan C Q. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Applied Materials & Interfaces, 2018, 10(22): 18619–18629

    Article  CAS  Google Scholar 

  17. Wang Z, Liu S, Zhang H, Zhang Z, Jiang J, He D, Lin S. Thallium mining from industrial wastewaters enabled by a dynamic composite membrane process. Resources, Conservation and Recycling, 2022, 186: 106577

    Article  CAS  Google Scholar 

  18. Shi Y, Huang L, Mahmud S, Zhang G, Li H, Wang Y, Xiao T, Zeng Q, Liu Z, Yu H, et al. High-efficiently capturing trace thallium(I) from wastewater via the Prussian blue@polytetrafluoroethylene hybrid membranes. Chemical Engineering Journal, 2023, 451: 138712

    Article  CAS  Google Scholar 

  19. Bhattacharjee T, Islam M, Chowdhury D, Majumdar G. In-situ generated carbon dot modified filter paper for heavy metals removal in water. Environmental Nanotechnology, Monitoring & Management, 2021, 16: 100582

    Article  CAS  Google Scholar 

  20. Kim H, Wi H, Kang S, Yoon S, Bae S, Hwang Y. Prussian blue immobilized cellulosic filter for the removal of aqueous cesium. Science of the Total Environment, 2019, 670: 779–788

    Article  PubMed  CAS  Google Scholar 

  21. Lin H, Fang Q, Wang W, Li G, Guan J, Shen Y, Ye J, Liu F. Prussian blue/PVDF catalytic membrane with exceptional and stable Fenton oxidation performance for organic pollutants removal. Applied Catalysis B: Environmental, 2020, 273: 119047

    Article  CAS  Google Scholar 

  22. Qiu W, Yang H, Xu Z. Dopamine-assisted co-deposition: an emerging and promising strategy for surface modification. Advances in Colloid and Interface Science, 2018, 256: 111–125

    Article  PubMed  CAS  Google Scholar 

  23. Pi J, Yang H, Wan L, Wu J, Xu Z. Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property. Journal of Membrane Science, 2016, 500: 8–15

    Article  CAS  Google Scholar 

  24. Qu F, Cao A, Yang Y, Mahmud S, Su P, Yang J, He Z, Lai Q, Zhu L, Tu Z, et al. Hierarchically superhydrophilic poly(vinylidene fluoride) membrane with self-cleaning fabricated by surface mineralization for stable separation of oily wastewater. Journal of Membrane Science, 2021, 640: 119864

    Article  CAS  Google Scholar 

  25. Yang Y, Lai Q, Mahmud S, Lu J, Zhang G, Huang Z, Wu Q, Zeng Q, Huang Y, Lei H, et al. Potocatalytic antifouling membrane with dense nano-TiO2 coating for efficient oil-in-water emulsion separation and self-cleaning. Journal of Membrane Science, 2022, 645: 120–204

    Article  Google Scholar 

  26. Lv Y, Zhang C, He A, Yang S, Wu G, Darling S, Xu Z. Photocatalytic nanofiltration membranes with self-cleaning property for wastewater treatment. Advanced Functional Materials, 2017, 27(27): 1700251

    Article  Google Scholar 

  27. Lv Y, Yang S, Du Y, Xu Z. Co-deposition kinetics of polydopamine/polyethyleneimine coatings: effects of solution composition and substrate surface. Langmuir, 2018, 34(44): 13123–13131

    Article  PubMed  CAS  Google Scholar 

  28. Mondal S, Ganguly S, Das P, Bhawal P, Das T, Nayak L, Khastgir D, Das N. High-performance carbon nanofiber coated cellulose filter paper for electromagnetic interference shielding. Cellulose (London, England), 2017, 24(11): 5117–5131

    CAS  Google Scholar 

  29. Yu F, Chen S, Chen Y, Li H, Yang L, Chen Y, Yin Y. Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 stainless steel. Journal of Molecular Structure, 2010, 982(1): 152–161

    Article  CAS  Google Scholar 

  30. Qian J, Zhou L, Yang X, Hua D, Wu N. Prussian blue analogue functionalized magnetic microgels with ionized chitosan for the cleaning of cesium-contaminated clay. Journal of Hazardous Materials, 2020, 386: 121965

    Article  PubMed  CAS  Google Scholar 

  31. Ederer J, Janoš P, Ecorchard P, Tolasz J, Štengl V, Beneš H, Perchacz M, Pop-Georgievski O. Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC Advances, 2017, 7(21): 12464–12473

    Article  CAS  Google Scholar 

  32. Forment A A, Weitz R, Sagar A, Lee E, Konuma M, Burghard M, Kern K. Strong p-type doping of individual carbon nanotubes by Prussian blue functionalization. Small, 2008, 4(10): 1671–1675

    Article  Google Scholar 

  33. Cano A, Rodríguez-Hernández J, Reguera L, Rodríguez-Castellón E, Reguera E. On the scope of XPS as sensor in coordination chemistry of transition metal hexacyanometallates. European Journal of Inorganic Chemistry, 2019, 13(13): 1724–1732

    Article  Google Scholar 

  34. Yuan Z, Zhao R, Sun G, Li P, Yin S, Zhou G, He G, Jiang X. Membrane flux response technology for early warning of initial surface scaling in membrane distillation. Journal of Water Process Engineering, 2023, 55: 104104

    Article  Google Scholar 

  35. Huang G, Chen J, Dou P, Yang X, Zhang L. in situ electrosynthesis of magnetic Prussian blue/ferrite composites for removal of cesium in aqueous radioactive waste. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323(1): 557–565

    Article  CAS  Google Scholar 

  36. Wang H, Liu J, Yao J, He Q, Ma J, Chai H, Liu C, Hu X, Chen Y, Zou Y, et al. Transport of Tl(I) in water-saturated porous media: role of carbonate, phosphate and macromolecular organic matter. Water Research, 2020, 186: 116325

    Article  PubMed  CAS  Google Scholar 

  37. Tansel B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Separation and Purification Technology, 2012, 86: 119–126

    Article  CAS  Google Scholar 

  38. Zhang H, Qi J, Liu F, Wang Z, Ma X, He D. One-pot synthesis of magnetic Prussian blue for the highly selective removal of thallium(I) from wastewater: mechanism and implications. Journal of Hazardous Materials, 2022, 423: 126972

    Article  PubMed  CAS  Google Scholar 

  39. Wick S, Baeyens B, Marques F M, Voegelin A. Thallium adsorption onto illite. Environmental Science & Technology, 2018, 52(2): 571–580

    Article  CAS  Google Scholar 

  40. Vincent T, Taulemesse J, Dauvergne A, Chanut T, Testa F, Guibal E. Thallium(I) sorption using Prussian blue immobilized in alginate capsules. Carbohydrate Polymers, 2014, 99: 517–526

    Article  PubMed  CAS  Google Scholar 

  41. Ma X, Wang Y, Tong L, Luo J, Chen R, Wang Y, Guo X, Wang J, Zhou Z, Qi J, et al. Gravity-driven membrane system treating heavy metals-containing secondary effluent: improved removal of heavy metals and mechanism. Chemosphere, 2023, 339: 139590

    Article  PubMed  CAS  Google Scholar 

  42. Belzile N, Chen Y. Thallium in the environment: a critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry, 2017, 84: 218–243

    Article  CAS  Google Scholar 

  43. Karbowska B. Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. Environmental Monitoring and Assessment, 2016, 188(11): 640

    Article  PubMed  PubMed Central  Google Scholar 

  44. Peter A, Viraraghavan T. Thallium: a review of public health and environmental concerns. Environment International, 2005, 31(4): 493–501

    Article  PubMed  CAS  Google Scholar 

  45. Liu J, Luo X, Sun Y, Tsang D, Qi J, Zhang W, Li N, Yin M, Wang J, Lippold H, et al. Thallium pollution in China and removal technologies for waters: a review. Environment International, 2019, 126: 771–790

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The current study was financially supported by the National Natural Science Foundation of China (Grant Nos. 22006026, 52270001), Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2023A1515012506, 2019A1515110546), Science and Technology Program of Guangzhou (Grant No. 202102080160), Project of Young Innovative Talents in Colleges and Universities of Guangdong Province (Grant No. 2019KQNCX111), Outstanding Youth Project of Guangdong Natural Science Foundation (Grant No. 2022B1515020030), Guangzhou Science and Technology Project (Grant Nos. 202201020530, 202201020200), Research Project of Guangzhou University (Grant No. YJ2023026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhu Xiong, Wei Zhang or Gaosheng Zhang.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

11705_2023_2379_MOESM1_ESM.pdf

The energy-free purification of trace thallium(I)-contaminated potable water using a high-selective filter paper with multi-layered Prussian blue decoration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Xiong, Z., Cheng, Y. et al. The energy-free purification of trace thallium(I)-contaminated potable water using a high-selective filter paper with multi-layered Prussian blue decoration. Front. Chem. Sci. Eng. 18, 13 (2024). https://doi.org/10.1007/s11705-023-2379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-023-2379-8

Keywords

Navigation