Skip to main content
Log in

Dynamic condensates in aggregation processes with mass injection

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The Takayasu aggregation model is a paradigmatic model of aggregation with mass injection, known to exhibit a power law distribution of mass over a range which grows in time. Working in one dimension we find that the mass profile in addition shows distinctive dynamic condensates which collectively hold a substantial portion of the mass (approximately \(80\%\) when injection and diffusion rates are equal) and lead to a substantial hump in the scaled distribution. To track these, we monitor the largest mass within a growing coarsening length. An interesting outcome of extremal statistics is that the mean of the globally largest mass in a finite system grows as a power law in time, modulated by strong multiplicative logarithms in both time and system size. At very long times, in a finite system, the state consists of a power-law-distributed background with a condensate whose mass increases linearly with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R M Ziff and G Stell J. Chem. Phys. 73 3492 (1980)

    Article  ADS  Google Scholar 

  2. M Y Lin, H M Lindsay, D A Weitz, R C Ball, R Klein and P Meakin Nature 339 360 (1989)

  3. S K Friedlander Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd Edition (New York: Oxford University Press) (2000)

  4. M Lazaridis and Y Drossinos Aerosol Science: Technology and Applications (eds) I Colbeck and M Lazaridis (West Sussex: John Wiley and Sons Ltd) Ch 2, p 15 (2014)

  5. C P Brangwynne, T J Mitchison and A A Hyman PNAS 108 4334 (2011)

    Article  ADS  Google Scholar 

  6. S Banani, H Lee, A Hyman and M K Rosen Nat. Rev. Mol. Cell Biol. 18 285 (2017)

    Article  Google Scholar 

  7. F Leyvraz Phys. Rep. 383 95 (2003)

  8. P L Krapivsky, S Redner and E Ben-Naim A Kinetic View of Statistical Physics (Cambridge: Cambridge University Press) (2010)

    Book  Google Scholar 

  9. C Connaughton, R Rajesh and O Zaboronski Phys. Rev. E 69 061114 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. R M Ziff J. Stat. Phys. 23 241 (1980)

  11. S N Majumdar, S Krishnamurthy and M Barma Phys. Rev. Lett. 81 3691 (1998)

    Article  ADS  Google Scholar 

  12. R Rajesh and S N Majumdar Phys. Rev. E 63 3 036114 (2001)

    Article  ADS  Google Scholar 

  13. S N Majumdar, S Krishnamurthy and M Barma J. Stat. Phys. 99 1 (2000)

    Article  ADS  Google Scholar 

  14. A Das, S Chatterjee P Pradhan and P K Mohanty Phys. Rev. E 92 052107 (2015)

    Article  ADS  Google Scholar 

  15. R Rajesh, D Das, B Chakraborty and M Barma Phys. Rev. E 66 056104 (2002)

    Article  ADS  Google Scholar 

  16. H Sachdeva, M Barma and M Rao Phys. Rev. Lett. 110 150601 (2013)

    Article  ADS  Google Scholar 

  17. H Sachdeva and M Barma J. Stat. Phys. 154 950 (2014)

    Article  ADS  Google Scholar 

  18. H Takayasu I Nishikawa and H Tasaki Phys. Rev. A 37 3110 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  19. H Takayasu Phys. Rev. Lett. 63 2563 (1989)

  20. G Huber Physica A 170 463 (1991)

  21. R Rajesh and S N Majumdar Phys. Rev. E 62 3186 (2000)

    Article  ADS  Google Scholar 

  22. A J Bray Adv. Phys. 43 357 (1994)

  23. T M Ligget Stochastic Interacting Systems: Contact, Voter and Exclusion Processes Ch 3, p 139 (1999)

  24. A E Scheidegger Bull. I.A.S.H. 12 15 (1967)

  25. I Rodriguez-Iturbe and A Rinaldo Fractal River Basins (New York: Cambridge University Press) (1997)

  26. S N Coppersmith C-h Liu, S Majumdar, O Narayan and T A Witten Phys. Rev. E 53 4673 (1996)

    Article  ADS  Google Scholar 

  27. M R Evans and T Hanney J. Phys. A: Math. Gen. 38 R195 (2005)

    Article  ADS  Google Scholar 

  28. R A Fisher and L H C Tippett Mathematical proceedings of the Cambridge philosophical society 24 180 (1928)

    Article  Google Scholar 

  29. S N Majumdar A Pal and G Schehr Phys. Rep. 840 1 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. L Frachebourg, I Ispolatov and P L Krapivsky Phys. Rev. E 52 R5727 (1995)

    Article  ADS  Google Scholar 

  31. M R Evans, S N Majumdar and R K P Zia J. Stat. Phys. 123 357 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. M Höll W Wang and E Barkai Phys. Rev. E 102 042141 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  33. C Iyer A Das and M Barma Phys. Rev. E 107 014122 (2023)

    Article  ADS  Google Scholar 

  34. A Das and M Barma J. Stat. Mech. 043203 (2023)

  35. F Spitzer Adv. Math. 5 246 (1970)

  36. R Rajesh, private communication

  37. M Takayasu and H Takayasu Nonequilibrium Statistical Mechanics in One Dimension (ed) V Privman (Cambridge: Cambridge University Press) Ch 9, p 181 (1997)

  38. S N Majumdar and C Sire Phys. Rev. Lett. 71 3729 (1993)

    Article  ADS  Google Scholar 

  39. H Takayasu, M Takayasu A Provata ang G Huber J. Stat. Phys. 65 725 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  40. M Takayasu, H Takayasu and Y-H Taguchi Int. J. Modern Phys. B 8 28 3887 (1994)

    Article  ADS  Google Scholar 

  41. S N Majumdar, S Krishnamurthy and M Barma Phys. Rev. E 61 6337 (2000)

    Article  ADS  Google Scholar 

  42. R Rajesh Phys. Rev. E 69 036128 (2004)

    Article  ADS  Google Scholar 

  43. C Connaughton, R Rajesh and O Zaboronski, J. Stat. Mech. P09016 (2010)

  44. C Connaughton, R Rajesh, R Tribe and O Zaboronski J. Stat. Phys. 152 1115 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. D Dhar Physica A Stat. Mech. Appl. 263 4 (1999)

  46. C Connaughton, R Rajesh and O Zaboronski Phys. Rev. Lett. 94 194503 (2005)

    Article  ADS  Google Scholar 

  47. C Connaughton, R Rajesh and O Zaboronski Physica D 222 97 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  48. C Connaughton, R Rajesh and O Zaboronski Phys. Rev. Lett. 98 080601 (2007)

    Article  ADS  Google Scholar 

  49. C Connaughton, R Rajesh and O Zaboronski Physica A 384 108 (2007)

    Article  ADS  Google Scholar 

  50. C Connaughton, R Rajesh and O Zaboronski Phys. Rev. E 78 041403 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  51. E J Gumbel Statistics of Extremes (New York: Dover) (1958)

  52. G Mikaberidze, A Plaud and R M D’Souza, arXiv:2308.02658 (2023)

Download references

Acknowledgements

We acknowledge R. Rajesh for several useful inputs and Chandrashekar Iyer for discussions. M.B. acknowledges support under the DAE Homi Bhabha Chair Professorship of the Department of Atomic Energy, India. This project was funded by intramural funds at TIFR Hyderabad from the Department of Atomic Energy (DAE), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arghya Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Barma, M. Dynamic condensates in aggregation processes with mass injection. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03030-1

Keywords

Navigation