Skip to main content
Log in

Compound isolation through bioassay-guided fractionation of Tectona grandis leaf extract against Vibrio pathogens in shrimp

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Tectona grandis Linn, commonly known as teak, is traditionally used to treat a range of diseases, including the common cold, headaches, bronchitis, scabies, diabetes, inflammation, and others. The present study was conducted with the purpose of isolating and identifying the active compounds in T. grandis leaf against a panel of Vibrio spp., which may induce vibriosis in shrimp, using bioassay-guided purification. The antimicrobial activity was assessed using the microdilution method, followed by the brine shrimp lethality assay to determine toxicity. Following an initial screening with a number of different solvents, it was established that the acetone extract was the most effective. The acetone extract was then exposed to silica gel chromatography followed by reversed-phase HPLC and further UHPLC-orbitrap-ion trap mass spectrometry to identify the active compounds. Three compounds called 1-hydroxy-2,6,8-trimethoxy-9,10-anthraquinone, deoxyanserinone B, and khatmiamycin were identified with substantial anti-microbial action against V. parahaemolyticus, V. alginolyticus, V. harveyi, V. anguillarum, and V. vulnificus. The IC50 values of the three compounds viz. 1-hydroxy-2,6,8-trimethoxy-9,10-anthraquinone, deoxyanserinone B, and khatmiamycin varied between 2 and 28, 7 and 38, and 7 and 56 μg/mL, respectively, which are as good as the standard antibiotics such as amoxicillin and others. The in vivo toxicity test revealed that the compounds were non-toxic to shrimp. The results of the study suggest that T. grandis leaf can be used as a source of bioactive compounds to treat Vibrio species in shrimp farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdalla MA, Win HY, Islam M, Von Tiedemann A, Schüffler A, Laatsch H (2011) Khatmiamycin, a motility inhibitor and zoosporicide against the grapevine downy mildew pathogen Plasmopara viticola from Streptomyces sp. ANK313. J Antibiot 64(10):655–659

    Article  CAS  Google Scholar 

  • Abdel-Latif HM, Yilmaz E, Dawood MA, Ringø E, Ahmadifar E, Yilmaz S (2022) Shrimp vibriosis and possible control measures using probiotics, postbiotics, prebiotics, and synbiotics: a review. Aquaculture:737951

  • Almalki MA (2020) Isolation and characterization of polyketide drug molecule from Streptomyces species with antimicrobial activity against clinical pathogens. J Infect Public Health 13(1):125–130

    Article  PubMed  Google Scholar 

  • Apu AS, Muhit MA, Tareq SM, Pathan AH, Jamaluddin ATM, Ahmed M (2010) Antimicrobial activity and brine shrimp lethality bioassay of the leaves extract of Dillenia indica Linn. J Young Pharm 2(1):50–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Arasu MV, Duraipandiyan V, Ignacimuthu S (2013) Antibacterial and antifungal activities of polyketide metabolite from marine Streptomyces sp. AP-123 and its cytotoxic effect. Chemosphere 90(2):479–487

    Article  CAS  PubMed  Google Scholar 

  • Asdaq SMB, Nayeem N, Alam MT, Alaqel SI, Imran M, Hassan EWE, Rabbani SI (2022) Tectona grandis Lf: a comprehensive review on its patents, chemical constituents, and biological activities. Saudi J Biol Sci 29(3):1456–1464

    Article  CAS  PubMed  Google Scholar 

  • Barros IBD, Daniel JFDS, Pinto JP, Rezende MI, Braz Filho R, Ferreira DT (2011) Phytochemical and antifungal activity of anthraquinones and root and leaf extracts of Coccoloba mollis on phytopathogens. Braz Arch Biol Technol 54:535–541

    Article  Google Scholar 

  • Bitchagno GTM, Sama Fonkeng L, Kopa TK, Tala MF, Kamdem Wabo H, Tume CB et al (2015) Antibacterial activity of ethanolic extract and compounds from fruits of Tectona grandis (Verbenaceae). BMC Complement Altern Med 15:1–6

    Article  CAS  Google Scholar 

  • Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15(7):1917–1942

    Article  PubMed  Google Scholar 

  • Cai L, Wei GX, van der Bijl P, Wu CD (2000) Namibian chewing stick, Diospyros lycioides, contains antibacterial compounds against oral pathogens. J Agric Food Chem 48(3):909–914

    Article  CAS  PubMed  Google Scholar 

  • Chandrakala N, Priya S (2017) Vibriosis in shrimp aquaculture a review. Int J Sci Res Sci Eng Techno 3(2):27–33

    Google Scholar 

  • Chatterjee S, Haldar S (2012) Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J Mar Sci: Res Dev 1:1–7

    Google Scholar 

  • Didry N, Dubreuil L, Pinkas M (1994) Activity of anthraquinonic and naphthoquinonic compounds on oral bacteria. Die Pharmazie 49(9):681–683

    CAS  PubMed  Google Scholar 

  • Ejele AE, Akalezi CI, Iwu IC, Ukiwe LN, Enenebaku CK, Ngwu SU (2014) Bioassay-guided isolation, purification and charaterization of antimicrobial compound from acidic metabolite of Piper umbellatum seed extract. Int J Chem 6(1):61–70

    Article  CAS  Google Scholar 

  • El-Saadony MT, Swelum AA, Ghanima MMA, Shukry M, Omar AA, Taha AE et al (2022) Shrimp production, the most important diseases that threaten it, and the role of probiotics in confronting these diseases: a review. Res Vet Sci 144(1):126–140

    Article  PubMed  Google Scholar 

  • Famuyide IM, Aro AO, Fasina FO, Eloff JN, McGaw LJ (2019) Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated South African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complement Altern Med 19(1):1–13

    Article  CAS  Google Scholar 

  • Flegel TW (2012) Historic emergence, impact and current status of shrimp pathogens in Asia. J Invertebr Pathol 110(2):166–173

    Article  PubMed  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2009) Plant polyketide synthases: a fascinating group of enzymes. Plant Physiol Biochem 47(3):167–174

    Article  CAS  PubMed  Google Scholar 

  • Funt RC, Martin J (1993) Black walnut toxicity to plants, humans and horses. Ohio State University extension fact sheet HYG-1148-93

    Google Scholar 

  • Ghosh AK, Panda SK, Luyten W (2021) Anti-vibrio and immune-enhancing activity of medicinal plants in shrimp: a comprehensive review. Fish Shellfish Immunol 117:192–210

    Article  CAS  PubMed  Google Scholar 

  • Han J, Zhang J, He W, Huang P, Oyeleye A, Liu X, Zhang L (2015) Bioassay-guided identification of bioactive molecules from traditional Chinese medicines. In: Chemical biology. Humana Press, New York, NY, pp 187–196

    Chapter  Google Scholar 

  • Hossain A, Habibullah-Al-Mamun M, Nagano I, Masunaga S, Kitazawa D, Matsuda H (2022) Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environ Sci Pollut Res:1–22

  • Hu H, Hu C, Peng J, Ghosh AK, Khan A, Sun D, Luyten W (2021) Bioassay-guided interpretation of antimicrobial compounds in Kumu, a TCM preparation from Picrasma quassioides’ stem via UHPLC-orbitrap-ion trap mass spectrometry combined with fragmentation and retention time calculation. Front Pharmacol 12

  • Huang Q, Lu G, Shen HM, Chung MC, Ong CN (2007) Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev 27(5):609–630

    Article  CAS  PubMed  Google Scholar 

  • Iswarya A, Marudhupandi T, Vaseeharan B, Ibrahim WNW, Leong LK, Musa N (2022) Shrimp vibriosis. In: Aquaculture pathophysiology. Academic Press, pp 191–206

    Chapter  Google Scholar 

  • Kamsu GT, Djamen Chuisseu DP, Fodouop Chegaing SP, Laure Feudjio HB, Ndel Famen LC, Kodjio N et al (2021) Toxicological profile of the aqueous extract of Tectona grandis lf (Verbenaceae) leaves: a medicinal plant used in the treatment of typhoid fever in traditional Cameroonian medicine. J Toxicol 2021:10

    Article  Google Scholar 

  • Kerkoub N, Panda SK, Yang MR, Lu JG, Jiang ZH, Nasri H, Luyten W (2018a) Bioassay-guided isolation of anti-Candida biofilm compounds from methanol extracts of the aerial parts of Salvia officinalis (Annaba, Algeria). Front Pharmacol 9:1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan NT (2019) Anthraquinones-a naturopathic compound. J New Dev Chem 2(2):25

    Google Scholar 

  • Klaus V, Hartmann T, Gambini J, Graf P, Stahl W, Hartwig A, Klotz LO (2010) 1, 4-Naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes. Arch Biochem Biophys 496(2):93–100

    Article  CAS  PubMed  Google Scholar 

  • Kopa TK, Tchinda AT, Tala MF, Zofou D, Jumbam R, Wabo HK et al (2014) Antiplasmodial anthraquinones and hemisynthetic derivatives from the leaves of Tectona grandis (Verbenaceae). Phytochem Lett 8:41–45

    Article  CAS  Google Scholar 

  • Krishna MS, Jayakumaran NA (2010) Antibacterial, cytotoxic and antioxidant potential of different extracts from leaf, bark and wood of Tectona grandis. Int J Pharm Sci Drug Res 2(2):155–158

    Google Scholar 

  • Krüger H, Schulz H (2007) Analytical techniques for medicinal and aromatic plants. Stewart Postharvest Rev 3(4):1–12

    Google Scholar 

  • Kumar V, Roy S (2017) Aquaculture drugs: sources, active ingredients, pharmaceutic preparations and methods of administration. J Aquac Res Dev 8:510

    Article  Google Scholar 

  • Lacret R, Varela RM, Molinillo JM, Nogueiras C, Macías FA (2011) Anthratectone and naphthotectone, two quinones from bioactive extracts of Tectona grandis. J Chem Ecol 37:1341–1348

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Yu YB, Choi JH, Jo AH, Hong SM, Kang JC, Kim JH (2022) Viral shrimp diseases listed by the OIE: a review. Viruses 14(3):585

    Article  PubMed  PubMed Central  Google Scholar 

  • Limbu SM, Zhou L, Sun SX, Zhang ML, Du ZY (2018) Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environ Int 115:205–219

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Veryser C, Lu JG, Wenseleers T, De Borggraeve WM, Jiang ZH, Luyten W (2018) Bioassay-guided isolation of active substances from Semen Torreyae identifies two new anthelmintic compounds with novel mechanism of action. J Ethnopharmacol 224:421–428

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Qi JK, Tang XY, Ye CT, Bai J, Tang C et al (2023) Polyketides with anti-inflammatory activity isolated from Rhodiola tibetica endophytic fungus Penicillium sp. HJT-A-10. Fitoterapia 164:105361

    Article  CAS  PubMed  Google Scholar 

  • Manojlovic NT, Solujic S, Sukdolak S (2002) Antimicrobial activity of an extract and anthraquinones from Caloplaca schaereri. Lichenologist 34(1):83–85

    Article  Google Scholar 

  • Moshi MJ, Innocent E, Magadula JJ, Otieno DF, Weisheit A, Mbabazi PK, Nondo RSO (2010) Brine shrimp toxicity of some plants used as traditional medicines in Kagera Region, North Western Tanzania. Tanzan J Health Res 12(1):63–67

    Article  CAS  PubMed  Google Scholar 

  • Neamatallah A, Yan L, Dewar SJ, Austin B (2005) An extract from teak (Tectona grandis) bark inhibited Listeria monocytogenes and methicillin resistant Staphylococcus aureus. Lett Appl Microbiol 41(1):94–96

    Article  CAS  PubMed  Google Scholar 

  • O'brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267(17):5421–5426

    Article  CAS  PubMed  Google Scholar 

  • Panda SK, Mohanta YK, Padhi L, Luyten W (2019) Antimicrobial activity of select edible plants from Odisha, India against food-borne pathogens. LWT 113:108246

    Article  CAS  Google Scholar 

  • Panda SK, Padhi L, Leyssen P, Liu M, Neyts J, Luyten W (2017) Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Front Pharmacol 8:658

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahamouz-Haghighi S, Bagheri K, Sharafi A, Tavakolizadeh M, Mohsen-Pour N (2022) Phytochemical screening and cytotoxicity assessment of Plantago lanceolata L. root extracts on colorectal cancer cell lines and brine shrimp larvae and determination of the median lethal dose in mice. S Afr J Bot 149:740–747

    Article  CAS  Google Scholar 

  • Ravichandiran P, Sheet S, Premnath D, Kim AR, Yoo DJ (2019) 1, 4-Naphthoquinone analogues: potent antibacterial agents and mode of action evaluation. Molecules 24(7):1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8(1):1–10

    CAS  PubMed  Google Scholar 

  • Shukla N, Kumar M, Akanksha, Ahmad G, Rahuja N, Singh AB et al (2010) Tectone, a new antihyperglycemic anthraquinone from Tectona grandis leaves. Nat Prod Commun 5(3)

  • Singh R, Chauhan SMS (2004) 9, 10-Anthraquinones and other biologically active compounds from the genus Rubia. Chem Biodivers 1(9):1241–1264

    Article  CAS  PubMed  Google Scholar 

  • Tamokou JDD, Tala MF, Wabo HK, Kuiate JR, Tane P (2009) Antimicrobial activities of methanol extract and compounds from stem bark of Vismia rubescens. J Ethnopharmacol 124(3):571–575

    Article  CAS  PubMed  Google Scholar 

  • Tanih NF, Ndip RN (2012) Evaluation of the acetone and aqueous extracts of mature stem bark of Sclerocarya birrea for antioxidant and antimicrobial properties. Evid Based Complementary Altern Med 2012

  • Ullah MO, Haque M, Urmi KF, Zulfiker AHM, Anita ES, Begum M, Hamid K (2013) Anti-bacterial activity and brine shrimp lethality bioassay of methanolic extracts of fourteen different edible vegetables from Bangladesh. Asian Pac J Trop Biomed 3(1):1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Puyvelde L, Aissa A, Panda SK, De Borggraeve WM, Mukazayire MJ, Luyten W (2021) Bioassay-guided isolation of antibacterial compounds from the leaves of Tetradenia riparia with potential bactericidal effects on food-borne pathogens. J Ethnopharmacol 273:113956

    Article  PubMed  Google Scholar 

  • Vyas P, Wadhwani BD, Khandelwal P, Araya H, Fujimoto Y (2022) Tectonaquinones A, B and C: three new naphthoquinone derivatives from the heartwood of Tectona grandis. Nat Prod Res 36(7):1707–1715

    Article  CAS  PubMed  Google Scholar 

  • Vyas P, Yadav DK, Khandelwal P (2019) Tectona grandis (teak)–a review on its phytochemical and therapeutic potential. Nat Prod Res 33(16):2338–2354

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz S, Yilmaz E, Dawood MA, Ringø E, Ahmadifar E, Abdel-Latif HM (2022) Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: a review. Aquaculture 547:737514

    Article  CAS  Google Scholar 

  • Yu YB, Choi JH, Kang JC, Kim HJ, Kim JH (2022) Shrimp bacterial and parasitic disease listed in the OIE: a review. Microb Pathog:105545

Download references

Acknowledgements

We are grateful to the Bangladesh National Herbarium (BNH), Government of the People’s Republic of Bangladesh, for assistance in plant identification. Professor Sebastien Carpentier and Kusay Arat are sincerely thanked for their cooperation in implementing the UHPLC-Orbitrap-ion trap mass spectrometry in their laboratory. We would like to thank Arckens Lab for facilitating the hatching of Artemia for toxicity testing. We appreciate Ajmal Khan’s assistance with the in vitro cytotoxicity experiment.

Funding

The first author AK Ghosh was funded by a Prime Minister Fellowship from the Government of the People’s Republic of Bangladesh. W Luyten largely supported himself.

Author information

Authors and Affiliations

Authors

Contributions

Alokesh Kumar Ghosh: Conceptualization, Methodology, Software, Data curation, Writing-original draft preparation. Sujogya Kumar Panda: Supervision, Writing – review & editing. Haibo Hu: Software, Writing – review & editing. Liliane Schoofs: Supervision, Writing - review & editing, Walter Luyten: Supervision, Funding acquisition, Writing – review & editing.

Corresponding author

Correspondence to Alokesh Kumar Ghosh.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

All authors approved the manuscript for publication.

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3954 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A.K., Panda, S.K., Hu, H. et al. Compound isolation through bioassay-guided fractionation of Tectona grandis leaf extract against Vibrio pathogens in shrimp. Int Microbiol (2023). https://doi.org/10.1007/s10123-023-00468-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10123-023-00468-5

Keywords

Navigation