Skip to main content

Advertisement

Log in

Identification of intracellular activation mechanism of rhamnogalacturonan-I type polysaccharide purified from Panax ginseng leaves in macrophages and roles of component sugar chains on activity

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

This study aimed to investigate the mechanisms underlying intracellular signaling pathways in macrophages in relation to the structural features of rhamnogalacturonan (RG) I-type polysaccharide (PGEP-I) purified from Panax ginseng leaves. For this investigation, we used several specific inhibitors and antibodies against mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and pattern recognition receptors (PRRs). Furthermore, we investigated the roles of component sugar chains on immunostimulating activity through a sequential enzymatic and chemical degradation steps. We found that PGEP-I effectively induced the phosphorylation of several MAPK- and NF-κB-related proteins, such as p38, cJun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p65. Particularly, immunocytochemistry analysis confirmed the PGEP-I-induced translocation of p65 into the nucleus. Furthermore, the breakdown of PGEP-I side chains and main chain during sequential enzymatic and chemical degradation reduced the PGEP-I-induced macrophage cytokine secretion activity. IL-6, TNF-α, and NO secreted by macrophages are associated with several signaling pathway proteins such as ERK, JNK, and NF-κB and several PRRs such as dectin-1, CD11b, CD14, TLR2, TLR4, and SR. Thus, these findings suggest that PGEP-I exerts potent macrophage-activating effects, which can be attributed to its typical RG-I structure comprising arabinan, type II arabinogalactan, and rhamnose-galacturonic acid repeating units in the main chain.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiang M-H, Zhu L, Jiang J-G (2010) Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert Opin Ther Targets 14:1367–1402. https://doi.org/10.1517/14728222.2010.531010

    Article  CAS  PubMed  Google Scholar 

  2. Leung M, Liu C, Koon J, Fung K (2006) Polysaccharide biological response modifiers. Immunol Lett 105:101–114. https://doi.org/10.1016/j.imlet.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  3. Liu J, Willför S, Xu C (2015) A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre 5:31–61. https://doi.org/10.1016/j.bcdf.2014.12.001

    Article  CAS  Google Scholar 

  4. Yin M, Zhang Y, Li H (2019) Advances in research on immunoregulation of macrophages by plant polysaccharides. Front Immunol 10:145. https://doi.org/10.3389/fimmu.2019.00145

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu Y, Shen M, Song Q, Xie J (2018) Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym 183:91–101. https://doi.org/10.1016/j.carbpol.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  6. Voragen AG, Coenen G-J, Verhoef RP, Schols HA (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275. https://doi.org/10.1007/s11224-009-9442-z

    Article  CAS  Google Scholar 

  7. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277. https://doi.org/10.1016/j.pbi.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  8. Yapo BM (2011) Rhamnogalacturonan-I: a structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polym Rev 51:391–413. https://doi.org/10.1080/15583724.2011.615962

    Article  CAS  Google Scholar 

  9. Ishii T, Matsunaga T (2001) Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry 57:969–974. https://doi.org/10.1016/S0031-9422(01)00047-4

    Article  CAS  PubMed  Google Scholar 

  10. Park H-R, Park SB, Hong H-D, Suh HJ, Shin K-S (2017) Structural elucidation of anti-metastatic rhamnogalacturonan II from the pectinase digest of citrus peels (Citrus unshiu). Int J Biol Macromol 94:161–169. https://doi.org/10.1016/j.ijbiomac.2016.09.100

    Article  CAS  PubMed  Google Scholar 

  11. Yue F, Xu J, Zhang S, Hu X, Wang X, Lü X (2022) Structural features and anticancer mechanisms of pectic polysaccharides: a review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.04.073

    Article  PubMed  Google Scholar 

  12. Li N, Wang C, Georgiev MI, Bajpai VK, Tundis R, Simal-Gandara J, Lu X, Xiao J, Tang X, Qiao X (2021) Advances in dietary polysaccharides as anticancer agents: structure–activity relationship. Trends Food Sci Technol 111:360–377. https://doi.org/10.1016/j.tifs.2021.03.008

    Article  CAS  Google Scholar 

  13. Maria-Ferreira D, Dallazen JL, Corso CR, Nascimento AM, Cipriani TR, da Silva Watanabe P, Sant’Ana DMG, Baggio CH, de Paula Werner MF (2021) Rhamnogalacturonan polysaccharide inhibits inflammation and oxidative stress and alleviates visceral pain. J Funct Foods 82:104483. https://doi.org/10.1016/j.jff.2021.104483

    Article  CAS  Google Scholar 

  14. Sun L, Ropartz D, Cui L, Shi H, Ralet M-C, Zhou Y (2019) Structural characterization of rhamnogalacturonan domains from Panax ginseng CA Meyer. Carbohydr Polym 203:119–127. https://doi.org/10.1016/j.carbpol.2018.09.045

    Article  CAS  PubMed  Google Scholar 

  15. Merheb R, Abdel-Massih RM, Karam MC (2019) Immunomodulatory effect of natural and modified Citrus pectin on cytokine levels in the spleen of BALB/c mice. Int J Biol Macromol 121:1–5. https://doi.org/10.1016/j.ijbiomac.2018.09.189

    Article  CAS  PubMed  Google Scholar 

  16. Kwak B-S, Hwang D, Lee SJ, Choi H-J, Park H-Y, Shin K-S (2019) Rhamnogalacturonan-I-type polysaccharide purified from broccoli exerts anti-metastatic activities via innate immune cell activation. J Med Food 22:451–459. https://doi.org/10.1089/jmf.2018.4286

    Article  CAS  PubMed  Google Scholar 

  17. Birk R, Gratchev A, Hakiy N, Politz O, Schledzewski K, Guillot P, Orfanos C, Goerdt S (2001) Alternative Aktivierung antigenpräsentierender Zellen Konzept und klinische Bedeutung: Konzept und klinische Bedeutung. Hautarzt 52:193–200. https://doi.org/10.1007/s001050051289

    Article  CAS  PubMed  Google Scholar 

  18. Wu F, Zhou C, Zhou D, Ou S, Huang H (2017) Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity. J Funct Foods 37:574–585. https://doi.org/10.1016/j.jff.2017.08.030

    Article  CAS  Google Scholar 

  19. Galli G, Saleh M (2021) Immunometabolism of macrophages in bacterial infections. Front Cell Infect Microbiol 10:607650. https://doi.org/10.3389/fcimb.2020.607650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deng C, Fu H, Shang J, Chen J, Xu X (2018) Dectin-1 mediates the immunoenhancement effect of the polysaccharide from Dictyophora indusiata. Int J Biol Macromol 109:369–374. https://doi.org/10.1016/j.ijbiomac.2017.12.113

    Article  CAS  PubMed  Google Scholar 

  21. Wang C-L, Lu C-Y, Pi C-C, Zhuang Y-J, Chu C-L, Liu W-H, Chen C-J (2012) Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors. BMC Complement Altern Med 12:1–10. https://doi.org/10.1186/1472-6882-12-119

    Article  CAS  Google Scholar 

  22. Liu Y, Shepherd EG, Nelin LD (2007) MAPK phosphatases—regulating the immune response. Nat Rev Immunol 7:202–212. https://doi.org/10.1038/nri2035

    Article  CAS  PubMed  Google Scholar 

  23. Rao KMK (2001) MAP kinase activation in macrophages. J Leukoc Biol 69:3–10. https://doi.org/10.1189/jlb.69.1.3

    Article  CAS  PubMed  Google Scholar 

  24. Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:1–9. https://doi.org/10.1038/sigtrans.2017.23

    Article  CAS  Google Scholar 

  25. Son S-U, Lee HW, Shin K-S (2023) Immunostimulating activities and anti-cancer efficacy of rhamnogalacturonan-I rich polysaccharide purified from Panax ginseng leaf. Food Biosci 53:102618. https://doi.org/10.1016/j.fbio.2023.102618

    Article  CAS  Google Scholar 

  26. Son S-U, Lee SJ, Shin K-S (2022) Immunostimulating and intracellular signaling pathways mechanism on macrophage of rhamnogalacturonan-I type polysaccharide purified from radish leaves. Int J Biol Macromol 217:506–514. https://doi.org/10.1016/j.ijbiomac.2022.07.084

    Article  CAS  PubMed  Google Scholar 

  27. Kim HW, Shin M-S, Lee SJ, Park H-R, Jee HS, Yoon TJ, Shin K-S (2019) Signaling pathways associated with macrophage-activating polysaccharides purified from fermented barley. Int J Biol Macromol 131:1084–1091. https://doi.org/10.1016/j.ijbiomac.2019.03.159

    Article  CAS  PubMed  Google Scholar 

  28. Lasunskaia EB, Campos MN, de Andrade MR, DaMatta RA, Kipnis TL, Einicker-Lamas M, Da Silva WD (2006) Mycobacteria directly induce cytoskeletal rearrangements for macrophage spreading and polarization through TLR2-dependent PI3K signaling. J Leukoc Biol 80:1480–1490. https://doi.org/10.1189/jlb.0106066

    Article  CAS  PubMed  Google Scholar 

  29. van Holst G-J, Clarke AE (1985) Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Anal Biochem 148:446–450. https://doi.org/10.1016/0003-2697(85)90251-9

    Article  PubMed  Google Scholar 

  30. Son S-U, Lee SJ, Choi EH, Shin K-S (2022) Clarification of the structural features of Rhamnogalacturonan-I type polysaccharide purified from radish leaves. Int J Biol Macromol 209:923–934. https://doi.org/10.1016/j.ijbiomac.2022.04.045

    Article  CAS  PubMed  Google Scholar 

  31. Nosaka M, Ishida Y, Kimura A, Kuninaka Y, Taruya A, Ozaki M, Tanaka A, Mukaida N, Kondo T (2020) Crucial involvement of IL-6 in thrombus resolution in mice via macrophage recruitment and the induction of proteolytic enzymes. Front Immunol 10:3150. https://doi.org/10.3389/fimmu.2019.03150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang KS, Frank DA, Ritz J (2000) Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood 95:3183–3190. https://doi.org/10.1182/blood.V95.10.3183

    Article  CAS  PubMed  Google Scholar 

  33. Cavalcanti YVN, Brelaz MCA, Neves JKAL, Ferraz JC, Pereira VRA (2012) Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm Med 2012:745483. https://doi.org/10.1155/2012/745483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kounsar F, Rather MA, Ganai BA, Zargar MA (2011) Immuno-enhancing effects of the herbal extract from Himalayan rhubarb Rheum emodi Wall. ex Meissn. Food Chem 126:967–971. https://doi.org/10.1016/j.foodchem.2010.11.103

    Article  CAS  Google Scholar 

  35. Shen C-Y, Zhang W-L, Jiang J-G (2017) Immune-enhancing activity of polysaccharides from Hibiscus sabdariffa Linn. via MAPK and NF-kB signaling pathways in RAW264. 7 cells. J Funct Foods 34:118–129. https://doi.org/10.1016/j.jff.2017.03.060

    Article  CAS  Google Scholar 

  36. Yang S-H, Sharrocks AD, Whitmarsh AJ (2003) Transcriptional regulation by the MAP kinase signaling cascades. Gene 320:3–21. https://doi.org/10.1016/S0378-1119(03)00816-3

    Article  CAS  PubMed  Google Scholar 

  37. Guo Q, Bi D, Wu M, Yu B, Hu L, Liu C, Gu L, Zhu H, Lei A, Xu X (2020) Immune activation of murine RAW264. 7 macrophages by sonicated and alkalized paramylon from Euglena gracilis. BMC Microbiol 20:1–10. https://doi.org/10.1186/s12866-020-01782-y

    Article  CAS  Google Scholar 

  38. Patin EC, Thompson A, Orr SJ (2019) Pattern recognition receptors in fungal immunity. Semin Cell Dev Biol 89:24–33. https://doi.org/10.1016/j.semcdb.2018.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tang Z, Huang G (2022) Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed Pharmacother 150:113015. https://doi.org/10.1016/j.biopha.2022.113015

    Article  CAS  PubMed  Google Scholar 

  40. Mueller A, Raptis J, Rice PJ, Kalbfleisch JH, Stout RD, Ensley HE, Browder W, Williams DL (2000) The influence of glucan polymer structure and solution conformation on binding to (1→ 3)-β-d-glucan receptors in a human monocyte-like cell line. Glycobiology 10:339–346. https://doi.org/10.1093/glycob/10.4.339

    Article  CAS  PubMed  Google Scholar 

  41. Kaczmarska A, Pieczywek PM, Cybulska J, Zdunek A (2022) Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: a review. Carbohydr Polym 278:118909. https://doi.org/10.1016/j.carbpol.2021.118909

    Article  CAS  PubMed  Google Scholar 

  42. Ghosh K, Takahashi D, Kotake T (2023) Plant type II arabinogalactan: structural features and modification to increase functionality. Carbohydr Res. https://doi.org/10.1016/j.carres.2023.108828

    Article  PubMed  Google Scholar 

  43. Gotoh S, Naka T, Kitaguchi K, Yabe T (2021) Arabinogalactan in the side chain of pectin from persimmon is involved in the interaction with small intestinal epithelial cells. Biosci Biotechnol Biochem 85:1729–1736. https://doi.org/10.1093/bbb/zbab068

    Article  PubMed  Google Scholar 

  44. Guo R, Chen M, Ding Y, Yang P, Wang M, Zhang H, He Y, Ma H (2022) Polysaccharides as potential anti-tumor biomacromolecules—a review. Front Nutr 9:1–12. https://doi.org/10.3389/fnut.2022.838179

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a 2018 grant from the Korean Society of Ginseng funded by the Korean Ginseng Corporation. This work was supported by Kyonggi University‘s Graduate Research Assistantship 2023.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SUS: experiments, methodology, writing of the original draft, reviewing, and editing; HWL: experiments, methodology; JHP: experiments; KSS: conceptualization, methodology, and project administration.

Corresponding author

Correspondence to Kwang-Soon Shin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with respect to the work described in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 85 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, SU., Lee, H.W., Park, JH. et al. Identification of intracellular activation mechanism of rhamnogalacturonan-I type polysaccharide purified from Panax ginseng leaves in macrophages and roles of component sugar chains on activity. J Nat Med 78, 328–341 (2024). https://doi.org/10.1007/s11418-023-01768-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01768-w

Keywords

Navigation