Skip to main content
Log in

Evidence of an active role of resveratrol derivatives in the tolerance of wild grapevines (Vitis vinifera ssp. sylvestris) to salinity

  • Regular Paper – Physiology/Biochemistry/Molecular and Cellular Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Resveratrol and its derivatives are the most important phytoalexins with a crucial role in plant defense mechanisms. These compounds can occur either naturally or in response to abiotic stresses. Among them, salinity is one of the major threats to the sustainability and productivity of agro-economically important species, particularly those involved in the vini-viticulture sector. Understating salinity tolerance mechanisms in plants is required for the development of novel engineering tools. This study aimed to investigate the potential role of resveratrol derivatives in salinity tolerance of wild grapevines. Our data revealed that the tolerant Tunisian wild grapevine genotype “Ouchtata” exhibited an increased accumulation of resveratrol derivatives (glycosylated and non-glycosylated resveratrol and t-ɛ-viniferin and hydroxylated t-piceatannol) in both stems and roots, along with an increased total antioxidant activity (TAA) compared to the sensitive genotype “Djebba” under stress conditions, suggesting an involvement of these stilbenes in redox homeostasis, thereby, protecting cells from salt-induced oxidative damage. Overall, our study revealed, for the first time, an active role for resveratrol derivatives in salt stress tolerance in wild grapevine, highlighting their potential use as metabolic markers in future grapevine breeding programs for a sustainable vini-viticulture in salt-affected regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [SD], upon reasonable request.

Abbreviations

TPC:

Total phenolic compounds

TFC:

Total flavonoid content

TAA:

Total antioxidant activity

ROS:

Reactive oxygen species

SER:

Shoot elongation rate

RWC:

Relative water content

MSI:

Membrane stability index

PCA:

Principal analysis component

References

  • Abideen Z, Qasim M, Rasheed A, Adnan MY, Gul B, Khan MA (2015) Antioxidant activity and polyphenolic content of Phragmites karka under saline conditions. Pak J Bot 47:813–818

    CAS  Google Scholar 

  • Ahanger MA, Agarwal R (2017) Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma 254:1471–1486

    Article  CAS  PubMed  Google Scholar 

  • Akcin TA, Akcin A, Yalcın E (2017) Anatomical changes induced by salinity stress in Salicornia freitagii (Amaranthaceae). Brazi J Bot 40:1013–1018

    Article  Google Scholar 

  • Alston JM, Sambucci O (2019) Grapes in the world economy. Grape Genome:1–24

  • Arnold C, Gillet F, Gobat J-M (1998) Situation de la vigne sauvage Vitis vinifera ssp. silvestris en Europe. Vitis 37:159–170

    Google Scholar 

  • Askri H, Gharbi F, Rejeb S, Mliki A, Ghorbel A (2018) Differential physiological responses of Tunisian wild grapevines (Vitis vinifera L. subsp. sylvestris) to NaCl salt stress. Braz J Bot 41:795–804

    Article  Google Scholar 

  • Barceló AR, Pomar F, López-Serrano M, Pedreno MA (2003) Peroxidase: a multifunctional enzyme in grapevines. Funct Plant Biol 30:577–591

    Article  PubMed  Google Scholar 

  • Billet K, Houillé B, Dugé de Bernonville T, Besseau S, Oudin A, Courdavault V, Delanoue G, Guérin L, Clastre M, Giglioli-Guivarc’h N (2018) Field-based metabolomics of Vitis vinifera L. stems provides new insights for genotype discrimination and polyphenol metabolism structuring. Front Plant Sci 9:798

    Article  PubMed  PubMed Central  Google Scholar 

  • Boubakri H, Jdey A, Taamalli A, Taamalli W, Jebara M, Brini F, Riciputi Y, Pasini F, Christian M, Verardo V (2017) Phenolic composition as measured by liquid chromatography/mass spectrometry and biological properties of Tunisian barley. Int J Food Prop 20:1783–1797

    CAS  Google Scholar 

  • Carrasco D, Bellido A, Torres-Pérez R, Grimplet J, Ruíz-García L, Revilla E, Arroyo-Garcia R (2018) Biochemical and transcriptomic analysis in berries of wild and cultivated grapevine (Vitis vinifera L.). XII Int Conf Grapevine Breed Genet 1248:403–408

    Google Scholar 

  • Carrasco D, Zhou-Tsang A, Rodriguez-Izquierdo A, Ocete R, Revilla MA, Arroyo-García R (2022) Coastal wild grapevine accession (Vitis vinifera l. ssp. sylvestris) shows distinct late and early transcriptome changes under salt stress in comparison to commercial rootstock Richter 110. Plants 11:2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daldoul S, Boubakri H, Gargouri M, Mliki A (2020) Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture. Mol Biol Rep 47:3141–3153

    Article  CAS  PubMed  Google Scholar 

  • Daldoul S, Hanzouli F, Hamdi Z, Chenenaoui S, Wetzel T, Nick P, Mliki A, Gargouri M (2022) The root transcriptome dynamics reveals new valuable insights in the salt-resilience mechanism of wild grapevine (Vitis vinifera subsp. sylvestris). Front Plant Sci. https://doi.org/10.3389/fpls.2022.1077710

    Article  PubMed  PubMed Central  Google Scholar 

  • Daldoul S, Gargouri M, Weinert C, Jarrar A, Egert B, Mliki A, Nick P (2023) A Tunisian wild grape leads to metabolic fingerprints of salt tolerance. Plant Physiol. https://doi.org/10.1093/plphys/kiad304

    Article  PubMed  Google Scholar 

  • Duan D, Halter D, Baltenweck R, Tisch C, Tröster V, Kortekamp A, Hugueney P, Nick P (2015) Genetic diversity of stilbene metabolism in Vitis sylvestris. J Exp Bot 66:3243–3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2020) Management of salt affected soils: soil management under FAO SOILS PORTAL. FAO Rome, Italy

  • Gabaston J, El Khawand T, Waffo-Teguo P, Decendit A, Richard T, Mérillon J-M, Pavela R (2018) Stilbenes from grapevine root: a promising natural insecticide against Leptinotarsa decemlineata. J Pest Sci 91:897–906

    Article  Google Scholar 

  • Gouvinhas I, Santos RA, Queiroz M, Leal C, Saavedra MJ, Domínguez-Perles R, Rodrigues M, Barros AI (2018) Monitoring the antioxidant and antimicrobial power of grape (Vitis vinifera L.) stems phenolics over long-term storage. Ind Crops Prod 126:83–91

    Article  CAS  Google Scholar 

  • Guan L, Haider MS, Khan N, Nasim M, Jiu S, Fiaz M, Zhu X, Zhang K, Fang J (2018) Transcriptome sequence analysis elaborates a complex defensive mechanism of grapevine (Vitis vinifera L.) in response to salt stress. Int J Mol Sci 19:401

    Article  Google Scholar 

  • Guerrero RF, Cantos-Villar E, Puertas B, Richard T (2016) Daily preharvest UV-C light maintains the high stilbenoid concentration in grapes. J Agric Food Chem 64:5139–5147

    Article  CAS  PubMed  Google Scholar 

  • Guha A, Sengupta D, Rasineni GK, Reddy AR (2010) An integrated diagnostic approach to understand drought tolerance in mulberry (Morus indica L.). Flora: Morphol Distrib Funct Ecol Plants. 205:144–151

    Article  Google Scholar 

  • Hall D, De Luca V (2007) Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca). Plant J 49:579–591

    Article  CAS  PubMed  Google Scholar 

  • Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Natl Acad Sci 110:6907–6912

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegi G (1966) Illustrierte Flora von Mittel-Europa, Bd V, 3 Teil. Hanser, München:1966–1968

  • Hewitt EJ, Smith TA (1974) Plant mineral nutrition. English Universities Press Ltd.

  • Hniličková H, Hnilička F, Orsák M, Hejnák V (2019) Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ 65:90–96

    Article  Google Scholar 

  • Hodaei M, Rahimmalek M, Arzani A, Talebi M (2018) The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind Crops Prod 120:295–304

    Article  CAS  Google Scholar 

  • Holiday E, Preedy J (1953) The precision of a direct-reading flame photometer for the determination of sodium and potassium in biological fluids. Biochem J 55:214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MS, Persicke M, ElSayed AI, Kalinowski J, Dietz K-J (2017) Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. J Exp Bot 68:5961–5976

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y-L, Tsai W-J, Shen C-C, Chen C-C (2005) Resveratrol derivatives from the roots of Vitis t hunbergii. J Nat Prod 68:217–220

    Article  CAS  PubMed  Google Scholar 

  • Isah T (2019) Stress and defense responses in plant secondary metabolites production. Biol Res. https://doi.org/10.1186/s40659-019-0246-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismail A, Riemann M, Nick P (2012) The jasmonate pathway mediates salt tolerance in grapevines. J Exp Bot 63:2127–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeandet P, Vannozzi A, Sobarzo-Sánchez E, Uddin MS, Bru R, Martínez-Márquez A, Clément C, Cordelier S, Manayi A, Nabavi SF (2021) Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat Prod Rep 38:1282–1329

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Xu W, Duan D, Wang Y, Nick P (2016) A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence. J Exp Bot 67:5841–5856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jogaiah S, Ramteke SD, Sharma J, Upadhyay AK (2014) Moisture and salinity stress induced changes in biochemical constituents and water relations of different grape rootstock cultivars. Int J Agron. https://doi.org/10.1155/2014/789087

    Article  Google Scholar 

  • Khattab IM, Sahi VP, Baltenweck R, Maia-Grondard A, Hugueney P, Bieler E, Dürrenberger M, Riemann M, Nick P (2021) Ancestral chemotypes of cultivated grapevine with resistance to Botryosphaeriaceae-related dieback allocate metabolism towards bioactive stilbenes. New Phytol 229:1133–1146

    Article  CAS  PubMed  Google Scholar 

  • Khoury CK, Brush S, Costich DE, Curry HA, de Haan S, Engels JM, Guarino L, Hoban S, Mercer KL, Miller AJ (2022) Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytol 233:84–118

    Article  PubMed  Google Scholar 

  • Kumar S, Beena A, Awana M, Singh A (2017) Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front Plant Sci 8:1151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Tak Y, Potkule J, Choyal P, Tomar M, Meena NL, Kaur C (2020) Phenolics as plant protective companion against abiotic stress. Plant Phenolics Sustain Agric 1:277–308

    Article  Google Scholar 

  • Machado NF, Domínguez-Perles R (2017) Addressing facts and gaps in the phenolics chemistry of winery by-products. Molecules 22:286

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales M, Ros Barcelo A, Pedreno M (2000) Plant stilbenes: recent advances in their chemistry and biology. Adv Plant Physiol 3:39–70

    Google Scholar 

  • Moutinho-Pereira J, Magalhaes N, Torres de Castro L, Manuela Chaves M, Torres-Pereira J (2001) Physiological responses of grapevine leaves to bordeaux mixture under light. Vitis 40:117–121

    CAS  Google Scholar 

  • Phogat V, Pitt T, Stevens R, Cox J, Šimůnek J, Petrie P (2020) Assessing the role of rainfall redirection techniques for arresting the land degradation under drip irrigated grapevines. J Hydrol 587:125000

    Article  Google Scholar 

  • Pool R, Creasy L, Frackelton AS (1980) Resveratrol and the viniferins, their application to screening for disease resistance in grape breeding programs. Proceedings of the 3rd International symposium on grape breeding, Davis, Calif(USA), 15–18 Jun 1980. Dept. of Vitic. and Enology

  • Portu J, López R, Baroja E, Santamaría P, Garde-Cerdán T (2016) Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: methyl jasmonate, chitosan, and yeast extract. Food Chem 201:213–221

    Article  CAS  PubMed  Google Scholar 

  • Premachandra GS, Saneoka H, Ogata S (1990) Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soyabean. J Agric Sci 115:63–66

    Article  CAS  Google Scholar 

  • Rayne S, Karacabey E, Mazza G (2008) Grape cane waste as a source of trans-resveratrol and trans-viniferin: High-value phytochemicals with medicinal and anti-phytopathogenic applications. Ind Crops Prod 27:335–340

    Article  CAS  Google Scholar 

  • Ruiz-Moreno MJ, Raposo R, Cayuela JM, Zafrilla P, Pineiro Z, Moreno-Rojas JM, Mulero J, Puertas B, Giron F, Guerrero RF (2015) Valorization of grape stems. Ind Crops Prod 63:152–157

    Article  CAS  Google Scholar 

  • Rustioni L, Bianchi D (2021) Drought increases chlorophyll content in stems of Vitis interspecific hybrids. Theor Exp Plant Physiol 33:69–78

    Article  CAS  Google Scholar 

  • Sahu PK, Singh S, Gupta A, Singh UB, Brahmaprakash G, Saxena AK (2019) Antagonistic potential of bacterial endophytes and induction of systemic resistance against collar rot pathogen Sclerotium rolfsii in tomato. Biol Control 137:104014

    Article  CAS  Google Scholar 

  • Sairam R, Deshmukh P, Shukla D (1997) Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J Agron Crop Sci 178:171–178

    Article  CAS  Google Scholar 

  • Schmidlin L, Poutaraud A, Claudel P, Mestre P, Prado E, Santos-Rosa M, Wiedemann-Merdinoglu S, Karst F, Merdinoglu D, Hugueney P (2008) A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol 148:1630–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selmar D (2008) Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Landbauforschung Volkenrode 58:139

    Google Scholar 

  • Souid I, Toumi I, Hermosín-Gutiérrez I, Nasri S, Mliki A, Ghorbel A (2019) The effect of salt stress on resveratrol and piceid accumulation in two Vitis vinifera L. cultivars. Physiol Mol Biol Plants 25:625–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sytar O, Mbarki S, Zivcak M, Brestic M (2018) The involvement of different secondary metabolites in salinity tolerance of crops. Salinity responses and tolerance in plants, Volume 2: exploring RNAi, Genome editing and systems biology:21–48

  • Trchounian A, Petrosyan M, Sahakyan N (2016) Plant cell redox homeostasis and reactive oxygen species. Redox state as a central regulator of plant-cell stress responses:25–50

  • Valletta A, Iozia LM, Leonelli F (2021) Impact of environmental factors on stilbene biosynthesis. Plants 10:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 12:1–22

    Article  Google Scholar 

  • Vincent D, Ergül A, Bohlman MC, Tattersall EA, Tillett RL, Wheatley MD, Woolsey R, Quilici DR, Joets J, Schlauch K (2007) Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Bot 58:1873–1892

    Article  CAS  PubMed  Google Scholar 

  • Vincenzi S, Tomasi D, Gaiotti F, Lovat L, Giacosa S, Torchio F, Segade SR, Rolle L (2013) Comparative study of the resveratrol content of twenty-one Italian red grape varieties. South Afr J Enol Vitic 34:30–35

    CAS  Google Scholar 

  • Wang W, Tang K, Yang H-R, Wen P-F, Zhang P, Wang H-L, Huang W-D (2010) Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol Biochem 48:142–152

    Article  CAS  PubMed  Google Scholar 

  • Yen G, Chen H (1995) Antioxidant activity of different tea extracts in connection with their antimutagenicity. J Agr Food Chem 43:27–32

    Article  CAS  Google Scholar 

  • Zareei E, Javadi T, Aryal R (2018) Biochemical composition and antioxidant activity affected by spraying potassium sulfate in black grape (Vitis vinifera L. cv. Rasha). J Sci Food Agric 98:5632–5638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was conducted within the framework of the Tunisian National Research Program in the laboratory of Plant Molecular Physiology at the Centre of Biotechnology of Borj-Cedria. The project received financial support from the Tunisian Ministry of Higher Education and Scientific Research, and further assistance was provided through a scholarship granted by the Faculty of Sciences of Tunis, University Tunis El-Manar. The authors would like to thank the technical staff of the laboratory for their valuable contributions.

Funding

Université de Tunis El Manar, Ministère de l’Enseignement Supérieur et de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Contributions

SD, HZ, AM and MG conceived and designed the study. FH and SD conducted research including greenhouse culture and physiological analysis. FH performed biochemical and stilbene analysis. SV supervised HPLC analysis, SD and FH wrote the original draft of the manuscript with considerable contribution from MG and HB. All authors read and contribute to the review and editing of the final manuscript.

Corresponding authors

Correspondence to Mahmoud Gargouri or Samia Daldoul.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 811 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanzouli, F., Zemni, H., Gargouri, M. et al. Evidence of an active role of resveratrol derivatives in the tolerance of wild grapevines (Vitis vinifera ssp. sylvestris) to salinity. J Plant Res 137, 265–277 (2024). https://doi.org/10.1007/s10265-023-01515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-023-01515-y

Keywords

Navigation