Skip to main content
Log in

Evaluation of the Standard Entropy of Crystalline Alkali Metal Borates

  • PHYSICAL METHODS OF INVESTIGATION
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A composition–property relationship has been developed that makes it possible to select the optimal values of the standard entropy of alkali metal borates, for which available experimental and reference data vary in wide ranges. This relationship allows one to estimate the standard entropy of unstudied alkali metal borates with sufficient validity. To ensure the reliability of the relationship, a critical analysis of the initial data borrowed from reference books and original experimental works has been carried out. Experimental measurements of low-temperature heat capacity were processed to verify the reliability of the standard entropy values of alkali metal borates presented in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. A. Tupitsyn, V. A. Bychinskii, M. V. Shtenberg, et al., Russ. J. Inorg. Chem. (2023). https://doi.org/10.1134/S0036023622700243

  2. W. M. Latimer, The Oxidation States of the Elements and Their Potentials in Aqueous Solution (Prentice-Hall Inc., New York, 1938).

    Google Scholar 

  3. H. D. B. Jenkins, J. Chem. Thermodyn. 144, 106052 (2020). https://doi.org/10.1016/j.jct.2020.106052

    Article  CAS  Google Scholar 

  4. A. A. Tupitsyn, S. V. Yas’ko, V. A. Bychinskii, et al., Russ. J. Inorg. Chem. (2023). https://doi.org/10.1134/S0036023623600363

  5. H. D. B. Jenkins, J. Chem. Thermodyn. 135, 278 (2019). https://doi.org/10.1016/j.jct.2019.03.013

    Article  CAS  Google Scholar 

  6. O. V. Eremin and E. S. Epova, O. S. Rusal’, et al., Russ. J. Inorg. Chem. 61, 1003 (2016). https://doi.org/10.1134/S0036023616080064

    Article  CAS  Google Scholar 

  7. M. K. Aldabergenov and G. T. Balakaeva, Zh. Fiz. Khim. 67, 425 (1993).

    CAS  Google Scholar 

  8. O. N. Koroleva, V. A. Bychinskii, A. A. Tupitsyn, et al., Russ. J. Inorg. Chem. 60, 1104 (2015). https://doi.org/10.1134/S0036023615090107

    Article  CAS  Google Scholar 

  9. M. V. Shtenberg, V. A. Bychinskii, O. N. Koroleva, et al., Russ. J. Inorg. Chem. 62, 1464 (2017). https://doi.org/10.1134/S0036023617110183

    Article  CAS  Google Scholar 

  10. L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances, Ed. by V. P. Glushko (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  11. V. A. Medvedev, G. A. Bergman, V. P. Vasil’ev, et al., Thermal Constants of Substances, ed. by V. P. Glushko, 10 iss. (VINITI, Moscow, 1981) [in Russian].

  12. M. W. Chase, C. A. Davies, J. R. Downey, et al., JANAF Thermochemical Tables, 3rd ed. (Am. Inst. Phys. for the Nat. Bureau of Standards, Am. Chem. Soc., Washington D.C., New York, 1985).

  13. D. R. Stull, D. L. Hildenbrand, F. L. Oetting, and G. C. Sinke, J. Chem. Eng. Data 15, 52 (1970). https://doi.org/10.1021/je60044a035

    Article  CAS  Google Scholar 

  14. G. Grenier and E. F. Westrum, J. Am. Chem. Soc. 78, 6226 (1956). https://doi.org/10.1021/ja01605a004

    Article  CAS  Google Scholar 

  15. E. F. Westrum and G. Grenier, J. Am. Chem. Soc. 79, 1799 (1957). https://doi.org/10.1021/ja01565a007

    Article  CAS  Google Scholar 

  16. L. M. Khriplovich, A. P. Popov, and I. E. Paukov, Zh. Fiz. Khim. 50, 567 (1976).

    Google Scholar 

  17. I. E. Paukov, L. M. Khriplovich, and A. P. Popov, Zh. Fiz. Khim. 44, 547 (1970).

    CAS  Google Scholar 

  18. I. E. Paukov, L. M. Khriplovich, and A. P. Popov, Zh. Fiz. Khim. 45, 1295 (1971).

    CAS  Google Scholar 

  19. N. P. Tekhanovich, A. U. Sheleg, and Ya. V. Burak, Fiz. Tverd. Tela 32, 2513 (1990).

    CAS  Google Scholar 

  20. A. E. Aliev, V. F. Krivorotov, and P. K. Khabibullaev, Fiz. Tverd. Tela 39, 1548 (1997).

    CAS  Google Scholar 

  21. A. U. Sheleg, T. I. Dekola, N. P. Tekhanovich, and A. M. Luginets, Fiz. Tverd. Tela 39, 624 (1997).

    CAS  Google Scholar 

  22. D. D. Wagman, W. H. Evans, V. B. Parker, et al., Selected Values of Chemical Thermodynamic Properties. Compounds of Uranium, Protactinium, Thorium, Actinium, and the Alkali Metals, NBS Tech. Note 270-8 (Washington, DC, 1981).

  23. H. Yokokawa, J. Nat. Chem. Lab. Industry 83, 27 (1988).

    Google Scholar 

  24. O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  25. O. Kubaschewski, C. B. Alock, and P. J. Spencer, Material Thermochemistry (Pergamon Press, New York, 1993).

    Google Scholar 

  26. L. B. Pankratz, Thermodynamic Properties of Carbides, Nitrides, and Other Selected Substances (U.S. Dep. of the Interior, Bureau of Mines, Washington, DC, 1994).

  27. I. Barin, Thermochemical Data of Pure Substances (VCH-Verlag, Weinheim, 1885).

  28. V. A. Turdakin and V. V. Tarasov, Zh. Fiz. Khim. 42, 2787 (1968).

    CAS  Google Scholar 

  29. G. S. Mel’nikov and V. V. Tarasov, Tr. Mosk. Khim.-Tekhnol. Ins. im. D. I. Mendeleeva XLI, 8 (1963).

    Google Scholar 

  30. V. A. Bychinskii, A. A. Tupitsyn, A. V. Mukhetdinova, et al., Russ. J. Inorg. Chem. 58, 1511 (2013). https://doi.org/10.1134/S0036023613120061

    Article  CAS  Google Scholar 

  31. N. P. Tekhanovich and A. U. Sheleg, Fiz. Tverd. Tela 33, 900 (1991).

    Google Scholar 

  32. V. A. Ryabin, M. A. Ostroumov, and T. F. Svit, Thermodynamic Properties of Substances. Directory (Khimiya, Leningrad, 1977) [in Russian].

    Google Scholar 

  33. L. B. Pankratz and M. J. Ferrante, Thermodynamic Properties of For Crystalline Sodium Borates (U. S. Dept. of the Interior, Bureau of Mines, Washington, DC, 1971).

    Google Scholar 

  34. K. K. Kelley and E. G. King, Contributions to the Data on Theoretical Metallurgy, 14. Entropies of the Elements and Inorganic Compounds (U.S. Govt. Print. Off., Bureau of Mines, Washington, DC, 1961).

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 22-17-20005), https://rscf.ru/project/22-17-20005/. Review and critical analysis of the data was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation (State assignment no. 075-00880-22 PR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tupitsin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tupitsin, A.A., Yas’ko, S.V., Bychinskii, V.A. et al. Evaluation of the Standard Entropy of Crystalline Alkali Metal Borates. Russ. J. Inorg. Chem. 68, 1782–1788 (2023). https://doi.org/10.1134/S0036023623602349

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602349

Keywords:

Navigation