Skip to main content
Log in

Potentiometric Method for Determining Biologically Non-Degradable Antimicrobial Substances

  • PHYSICOCHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ion selective electrodes (ISEs) based on polymer plasticized membranes have been developed for the determination of benzalkonium chloride (alkyldimethylbenzylammonium), the active component being cesium bis-octodecyl-2-sulfonio-closo-decaborate Cs[B10H9S(C18H37)2] (sensor A). For the determination of norfloxacin hydrochloride, the active component is potassium tris-octodecyl-1-ammonio-closo-decaborate K[B10H9N(C18H37)3] (sensor B). It has been shown that the electrodes have a reversible potentiometric response with respect to the analyzed cations in the presence of a number of other inorganic and organic cations. The influence of the concentration of the electrode-active substance on the electrochemical characteristics of the manufactured sensor has been studied. The optimal composition of the ion-sensitive membrane has been found. It has been determined that the developed sensors provide a wide range of detectable concentrations (for sensor A, 2 × 10–7–1 × 10–2; for sensor B, 1 × 10–7–1 × 10–2) and a low detection limit (for sensor A, 1 × 10–7 M; for sensor B, 8 × 10–8 M). New ISEs can be recommended for direct potentiometric detection of free ions in water bodies and water extracts of soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. Zhang, U. Tezel, K. Li, et al., Water Res. 45, 1238 (2011). https://doi.org/10.1016/j.watres.2010.09.037

    Article  CAS  PubMed  Google Scholar 

  2. O. W. Barber and E. M. Hartmann, Crit. Rev. Environ. Sci. Technol. 52, 2691 (2022). https://doi.org/10.1080/10643389.2021.1889284

    Article  CAS  Google Scholar 

  3. Yu. M. Domnina, V. V. Suslov, S. A. Kedik, et al., Drug Dev. Regist. 9, 121 (2020). https://doi.org/10.33380/2305-2066-2020-9-4-121-127

    Article  CAS  Google Scholar 

  4. K. Kümmerer, A. Eitel, U. Braun, et al., J. Chromatogr. A 774, 281 (1997). https://doi.org/10.1016/S0021-9673(97)00242-2

    Article  PubMed  Google Scholar 

  5. N. Ul’yanovskii, D. S. Kosyakov, and I. Shavrina, Mass-spektrometriya 16, 243 (2022). https://doi.org/10.25703/MS.2021.59.36.002

    Article  Google Scholar 

  6. N. H. Ly, P. Nguyen, S. J. Son, et al., Bull. Korean. Chem. Soc. 43, 246 (2022). https://doi.org/10.1002/bkcs.12441

    Article  CAS  Google Scholar 

  7. S. Schubert, Z. Gesundh. 9, 171 (2014). https://doi.org/10.1007/s11553-014-0457-y

  8. S. Von Ah, R. Stephan, K. Zurfluh, et al., Schweiz. Arch. Tierheilkd. 161, 387 (2019). https://doi.org/10.17236/sat00211

    Article  CAS  PubMed  Google Scholar 

  9. E. Bloem, A. Albihn, J. Elving, et al., Sci. Total Environ. 607608, 225 (2017). https://doi.org/10.1016/j.scitotenv.2017.06.274

  10. C. Domes, R. Domes, J. Popp, et al., Anal. Chem. 89, 9997 (2017). https://doi.org/10.1021/acs.analchem.7b02422

    Article  CAS  PubMed  Google Scholar 

  11. C. Ratsak, B. Guhl, S. Zuhlke, et al., Environ. Sci. Eur. 25, 7 (2013). https://doi.org/10.1186/2190-4715-25-7

    Article  Google Scholar 

  12. S. G. Abdullina and E. A. Serebriannikova, Med. Pharm. J. Pulse 24, 17 (2022). https://doi.org/10.26787/nydha-2686-6838-2022-24-6-17-22

    Article  Google Scholar 

  13. A. S. Kubasov, E. S. Turishev, A. V. Kopytin, et al., Inorg. Chim. Acta 514, 119992 (2021). https://doi.org/10.1016/j.ica.2020.119992

    Article  CAS  Google Scholar 

  14. E. Zdrachek and E. Bakker, Anal. Chem. 91, 2 (2019). https://doi.org/10.1021/acs.analchem.8b04681

    Article  CAS  PubMed  Google Scholar 

  15. E. S. Turyshev, L. K. Shpigun, A. V. Kopytin, et al., Austin. J. Anal. Pharm. Chem. 10, 1154 (2023). https://doi.org/10.26420/austinjanalpharmchem.2023.1154

    Article  Google Scholar 

  16. K. Yu. Zhizhin, E. S. Turyshev, A. V. Kopytin, et al., Nanosystems: Phys. Chem. Math. 13, 688 (2022). https://doi.org/10.17586/2220-8054-2022-13-6-688-697

    Article  CAS  Google Scholar 

  17. A. S. Kubasov, E. S. Turishev, A. V. Golubev, et al., Inorg. Chim. Acta 507, 119589 (2020). https://doi.org/10.1016/j.ica.2020.119589

    Article  CAS  Google Scholar 

  18. A. V. Nelyubin, I. N. Klyukin, A. S. Novikov, et al., Inorganics 10, 196 (2022). https://doi.org/10.3390/inorganics10110196

    Article  CAS  Google Scholar 

  19. A. S. Kubasov, E. S. Turishev, A. V. Golubev, et al., Inorg. Chim. Acta 507, 119589 (2020). https://doi.org/10.1016/j.ica.2020.119589

    Article  CAS  Google Scholar 

  20. A. V. Nelyubin, N. A. Selivanov, A. Yu. Bykov, et al., Russ. J. Inorg. Chem. 67, 1776 (2022). https://doi.org/10.1134/S0036023622601106

    Article  CAS  Google Scholar 

  21. E. S. Turyshev, A. V. Kopytin, K. Y. Zhizhin, et al., Talanta 241, 123239 (2022). https://doi.org/10.1016/j.talanta.2022.123239

    Article  CAS  PubMed  Google Scholar 

  22. A. Kopytin, E. Turyshev, M. Madraimov, et al., Russ. J. Inorg. Chem. 68, 10 (2023).

    Article  Google Scholar 

  23. U. Schaller, E. Bakker, and E. Pretsch, Anal. Chem. 67, 3123 (1995). https://doi.org/10.1021/ac00114a005

    Article  CAS  Google Scholar 

  24. R. P. Buck and E. Lindner, Pure Appl. Chem. 66, 2527 (1994). https://doi.org/10.1351/pac199466122527

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the Center for Collective Use of the Physical Research Methods of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russia Federation within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences and the Council for Grants of the President of the Russian Federation within the framework of the project MK-207.2022.1.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Turyshev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turyshev, E.S., Kubasov, A.S., Golubev, A.V. et al. Potentiometric Method for Determining Biologically Non-Degradable Antimicrobial Substances. Russ. J. Inorg. Chem. 68, 1841–1847 (2023). https://doi.org/10.1134/S0036023623602386

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602386

Keywords:

Navigation